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Abstract

Business cycles often feature large shocks to specific sectors, accompanied by strong infla-
tionary swings led by the growing fraction of pricing-adjusting firms. Rationalizing such
phenomena requires enhancing our modeling toolkit. We do that by building a novel non-
linear dynamic general equilibrium framework containing a disaggregated production econ-
omy with networks and optimal decisions on the timing and size of price adjustments. The
interaction of our model ingredients creates equilibrium cascades: large movements in ag-
gregates trigger additional price adjustment decisions on the extensive margin. Crucially,
networks may dampen or amplify cascades, depending on the type of shock driving the busi-
ness cycle. When faced with large demand shocks, such as monetary interventions, networks
dampen cascades, thus slowing down price adjustment decisions and giving central banks
substantial power to stimulate the real economy with limited inflationary consequences. In
contrast, under aggregate or sector-specific supply shocks, networks amplify cascades, lead-
ing to fast increases in the frequency of repricing and large inflationary swings. Applied to
Euro Area data, we show that it is the novel interaction of networks with pricing cascades
that allows us to quantitatively match the surges in inflation and the repricing frequency in
the post-Covid era.
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1 Introduction

The dynamics of aggregate prices and quantities over the business cycle has long been a central

theme in economics. Recent events, such as the Covid pandemic and the Russian invasion

of Ukraine, have brought renewed attention to the topic, along with new evidence on the

cyclical properties of key macro-variables. First, following a prolonged period of stability, we

have witnessed the possibility of large inflationary swings in advanced economies, marked by

persistent double-digit rates of price growth in the US, the UK and the Euro Area. All while

the movements in aggregate activity have been milder and transitory. Second, we have learned

that much of the inflationary surge has come from rising frequency at which firms adjust their

prices (Montag and Villar, 2023; Cavallo et al., 2024). Third, large granular shocks, hitting

specific sectors such as energy and agriculture, have caused significant consequences for the rest

of the economy, despite their relatively small share in aggregate activity. Although informative,

such evidence cannot be analyzed through the lens of existing, even if immensely influential,

theoretical frameworks, featuring linearized single-sector setups with a constant frequency of

adjustment (Woodford, 2004; Gaĺı, 2015). This discrepancy calls for a new framework for

studying aggregate prices and quantities over the business cycle, and this paper develops one.

Our novel dynamic general equilibrium framework features a previously unexplored combi-

nation of three ingredients. First, a multi-sector structure with a fully unrestricted input-output

architecture, allowing to capture empirically realistic production networks. Second, firms mak-

ing pricing decisions in an optimal state-dependent manner, so that both the extensive and the

intensive margins of adjustment are endogenous. Third, a fully non-linear solution strategy,

tracing out the response of the economy to arbitrarily large shocks, either aggregate or sector-

specific. The interaction of our three ingredients delivers a novel theoretical mechanism, namely

pricing cascades: large movements in aggregates trigger possibly self-reinforcing adjustment de-

cisions at the extensive margin. Crucially, networks can dampen or amplify cascades, depending

on the type of shock hitting the economy. For demand shocks, such as monetary interventions,

networks dampen cascades, leading to muted price responses with a near-constant frequency of

adjustment in equilibrium. In contrast, networks amplify cascades following either aggregate

or sectoral supply shocks, with strongly non-linear price responses led by the extensive margin.

As a result, the novel mechanism of pricing cascades allows our framework to produce real-

istic monetary non-neutrality, while simultaneously generating substantial inflationary surges

following reasonably-sized and structurally-interpretable shocks. When estimated to Euro Area
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data, the interaction of networks with cascades allows our model to jointly match the surges in

inflation and the repricing frequency in the post-Covid era.

The shock-dependent interaction between production networks and pricing cascades is the

key novel channel that is unique to our model. The precise workings of the mechanism, as well

as its key quantitative implications, are as follows. Under demand shocks networks dampen cas-

cades by shrinking the magnitudes of desired price changes, hence making firm-level adjustment

decision less likely. In an economy with networks, a demand shock affects both the wage, as

well as the price of intermediate inputs. As long as markups are countercyclical under demand

shocks, the price of intermediates moves by less than the wage, generating smaller changes in

marginal costs relative to an economy without networks. Smaller movements in marginal costs

attenuate deviations between actual and desired prices, making it less likely that the firm opts

for the costly adjustment decision. Such cascades dampening effect has aggregate consequences,

namely smaller changes in the overall fraction of adjusters, muted response of aggregate infla-

tion, and stronger response of real GDP. In the version of our model estimated to 39 sectors

of the Euro Area economy, the aggregate consequences of cascades dampening are substantial.

Following a large expansion in money supply (+10%), the economy with fixed menu costs and

networks features a rise in the fraction of adjusters by 0.18, compared to an increase by 0.35

without the linkages. As for monetary non-neutrality, a 1% expansion leads to an impact GDP

rise of 0.85% with networks and 0.78% without networks; for the larger shock (+10%), the gap

widens: 6% under networks, as opposed to 2.5% without. Hence, cascades dampening leads to

substantial additional monetary non-neutrality, which persists even for large shocks and even

in the economy with fixed menu costs.

In contrast, networks amplify cascades following aggregate or sector-specific supply shocks.

For example, consider an exogenous contraction in aggregate total factor productivity (TFP). At

first, it leads to a one-for-one increase in firm-level marginal costs; on top of that, as long as prices

of intermediate inputs also go up in equilibrium, it leads to a further surge in costs. Relative

to the economy without networks, such double whammy of marginal cost increases further

expands deviations between actual and desired price changes, making the price adjustment

decision more likely. Such cascades amplification is not specific to aggregate supply shocks.

To see that, consider a TFP shock to a sector that acts as a major supplier of intermediate

inputs to the rest of the economy. On top of impacting the shocked sector itself, it also affects

marginal costs and hence the desired price changes in the downstream industries, thus setting off

cascades there as well. Quantitatively, the amplification of supply-driven cascades by networks
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has considerable aggregate consequences. Following a large aggregate TFP contraction (-10%),

the fraction of adjusters rises by 0.65, as opposed to 0.28 without networks. The latter creates

a strong non-linearity in the behavior of aggregate CPI inflation. While a -1% TFP contraction

generates 0.59% inflation on impact, a -10% contraction leads to 17% inflation, a surge driven

by the sharp increase in the equilibrium adjustment frequency. Beyond aggregate disturbances,

we find that large shocks to sectors such as “Chemicals and chemical products”, “Food and

beverages” and “Crops and animal production” can have a disproportionally large effect on the

economy-wide adjustment frequency, and hence generate sharp non-linear inflationary surges.

As a further quantification of the role played by the interaction of networks with cascades,

we subject our model to the key structural shocks experienced by the Euro Area economy in the

(post-)Covid years (2020-2024), and compare the model-implied dynamics of aggregate inflation

and adjustment frequency to that observed in the data. In particular, we feed in four series,

corresponding to aggregate demand, aggregate labor wedge, as well as the sectoral dynamics

of energy and food prices. We find that the model successfully matches the five percentage

point increase in the aggregate repricing frequency, as well as the aggregate inflation surge up

to 11% at the peak. In contrast, an otherwise identical model without networks generates at

most a one percentage point increase in aggregate repricing frequency, as well as an aggregate

inflation surge to only 5% at the peak. As for an economy with networks but time-dependent

pricing, it generates no change in adjustment frequency by construction, with a maximum of 7%

inflation. These results highlight the quantitative importance of our novel theoretical channel

– the interaction of networks with pricing cascades – for explaining aggregate business cycle

dynamics.

It also follows that our model is able to generate the empirically-observed surges in inflation

and adjustment frequency with structurally-interpretable shocks that are as large as in the data,

without compromising the potency to produce realistic non-neutrality of money. Recent work

by L’Huillier and Phelan (2023) and Blanco et al. (2024b) stresses that models, which produce

reasonable non-neutrality of money and Phillips Curve slope struggle to generate double-digit

inflation surges without appealing to shocks that are either unreasonably large or lack a clear

structural interpretation, such as cost-push or markup shocks. At the same time, models that

match inflation and frequency movements with reasonably-sized shocks imply that money is

close to neutral. In this sense, our novel theoretical channel, working through the interaction

of production networks and pricing cascades, offers a resolution to this long-standing and first-

order issue in the literature without deviating from a conventional price-setting setup.
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Contribution to the literature Our paper contributes to at least three broad strands of the

literature. First, we add to the vast literature on state-dependent pricing in macroeconomics;

see Costain and Nakov (2024) for a recent survey. Under state-dependent pricing, the probability

of a price change is endogenous and affected by idiosyncratic and aggregate shocks, in contrast

to time-dependent models such as Taylor (1979) or Calvo (1983). Our main contribution is

to the literature on general equilibrium implications of state-dependent pricing, marked by

the works of Golosov and Lucas (2007), Gertler and Leahy (2008) and Midrigan (2011) in

the context of single-sector models with small aggregate shocks and fixed menu costs.1 This

framework has been further explored analytically by Alvarez et al. (2016), Alvarez and Lippi

(2022) and Alvarez et al. (2022), whose results provide model-based sufficient statistics linking

the dynamics of macro aggregates to pricing moments that can be measured in firm-level data.

Subsequent work also considers one-sector models with state-dependent pricing subjected to

large aggregate shocks, such as the studies by Karadi and Reiff (2019), Cavallo et al. (2024),

Blanco et al. (2024a,b) and Karadi et al. (2024).2 As for multi-sector models with state-

dependent pricing, the seminal work by Nakamura and Steinsson (2010) studies the transmission

of monetary shocks in a setup with heterogeneous pricing and roundabout production. More

recent papers by Carvalho and Kryvtsov (2021) and Caratelli and Halperin (2023) consider

multi-sector frameworks with heterogeneous state-dependent pricing, but without an explicit

input-output structure.

We contribute to this literature by developing the first general equilibrium model, which com-

bines a multi-sector setup with a fully general input-output structure, state-dependent pricing

and arbitrarily large aggregate and sector-specific shocks. Moreover, we estimate the model to

39 sectors of the Euro Area economy, fully matching the sector-specific pricing moments as well

as the input-output structure.

Second, our paper is related to the growing literature on production networks and their

role in connecting micro shocks and frictions with aggregate business cycle fluctuations. The

seminal work by Acemoglu et al. (2012) considers a flexible-price efficient setup and shows how

production networks can amplify sector- or firm-specific shocks to create aggregate volatility.

Subsequent work by Baqaee and Farhi (2020) and Bigio and La’O (2020) provides general first-
1There are also papers that consider models with menu costs that are random rather than fixed (Dotsey et al.,

1999; Nakamura and Steinsson, 2010), or where the price change probability is a smoothly increasing function of
the gain from adjustment(Caballero and Engel, 2007; Costain and Nakov, 2011), instead of the step function it
is in the fixed menu cost model.

2See also the work of Alexandrov (2020) for the effect of trend inflation on the transmission of large shocks in
state-dependent pricing models.
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order aggregation results for microeconomic shocks and distortions in economies with inefficien-

cies and networks. As for the propagation of large shocks in flexible-price network economies,

it is studied in Baqaee and Farhi (2019). A separate strand of this literature analyzes linearized

models with production networks and time-dependent pricing, both positively (Pasten et al.,

2020; Ghassibe, 2021; Afrouzi and Bhattarai, 2023) and normatively (La’O and Tahbaz-Salehi,

2022; Rubbo, 2023).

We contribute to this literature by showing that the interaction of production networks

and state-dependent pricing creates a novel source of non-linearity in aggregate business cycles,

through pricing cascades created by large aggregate or sector-specific shocks. Our results stress

that both the source of the shock, either demand- or supply-side, as well as its sectoral original

matter for aggregate fluctuations and the degree of non-linearity. In case of sectoral supply

shocks, the position of the industry in the network can matter over an above its equilibrium

size, against the network-irrelevance results established in the prior literature (Hulten, 1978).

Third, we contribute to the literature that aims to explain the observed time series of

aggregate activity and inflation through the lens of general equilibrium models subjected to

structural shocks. The seminal work by Smets and Wouters (2003, 2007) estimates a rich dy-

namic stochastic general equilibrium model with full-information Bayesian techniques, obtaining

a decomposition of key macroeconomic aggregates in the United States and the Euro Area in

terms of aggregate structural shocks. While hugely influential, a key criticism of the approach

points to the excessive importance of wage and price markup shocks in decompositions, while

such disturbances have ambiguous microfoundations (Chari et al., 2009). Subsequent work by

Gaĺı et al. (2012) addresses the criticism by enriching the estimated model with involuntary

unemployment. More recent papers consider multi-sector setups with networks, allowing for a

role of industry-specific shocks in explaining aggregate fluctuations. In particular, Rubbo (2024)

finds that in the US, sectoral shocks account for most of the deflation and subsequent inflation

in the immediate aftermath of Covid, while aggregate factors explain most of the price surge

in 2021 and beyond. In a multi-country study allowing for international spillovers, Di Giovanni

et al. (2023) attribute inflation to 2020 to supply chain bottlenecks, while assigning a major

role to both aggregate shocks and energy prices in the subsequent periods.

With our quantitative exercise for the Euro Area in the (post-)Covid era, we contribute

by showing that one can explain both the surge in inflation and and the rise in the aggregate

adjustment frequency with four structural shocks: aggregate demand, aggregate labor wedge,

as well as sectoral shocks to energy and food prices. Crucially, we find that network amplifica-
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tion of pricing cascades following the sector-specific commodity price shocks is critical for the

quantitative fit.

Roadmap The remainder of the paper is structured as follows. Section 2 outlines the opti-

mization problem faced by each type of agent in the economy and the numerical strategy to solve

the equilibrium dynamics. Section 3 explains the key model mechanisms in a simplified version

of our setup. Section 4 outlines our procedure for estimating the structural parameters of the

model to match key sectoral micro-pricing moments for the Euro Area. Section 5 shows our

quantitative results for monetary shocks. Section 6 turns to quantitative results for aggregate

and sector-specific TFP shocks. Section 7 considers extensions to our baseline results. Section

8 describes our quantification exercise, where we assess the ability of our model to explain the

aggregate dynamics of inflation and repricing frequency in the Euro Area. Section 9 concludes.

2 Model

We begin by introducing our theoretical model, which presents a novel combination of three key

ingredients. First, it features a number of sectors populated by firms interconnected by pro-

duction networks, which facilitate trade in intermediate inputs, both within and across sectors.

Second, firms make optimal pricing decisions subject to menu costs. Third, we allow for both

aggregate, sector-specific and firm-level shocks, and present a numerical strategy that allows to

compute the economy-wide equilibrium dynamic response to an arbitrarily large disturbance of

any origin.

2.1 Overview

Time is discrete and indexed by t ∈ {0, 1, 2, ...}. The economy is populated by three (types of)

agents: households, firms and the government. There is a continuum of identical households,

each consuming output and supplying labor. Firms are subdivided into N sectors, indexed by

i ∈ {1, 2, ..., N}, each sector containing a continuum of monopolistically competitive firms of

measure one; we use Φi to denote the set of all firms in sector i. The government consists of the

central bank, which conducts policy by setting money supply, and the fiscal authority, which

collects taxes from firms and rebates them to households in a lump-sum fashion.
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2.2 Households

The representative household chooses a sequence of consumption, labor supply, and one-period

nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (1)

subject to the period-by-period budget constraint

PC
t Ct + Et{Λt,t+1Bt+1} ≤ Bt +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the

level of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum

from firm j in sector i at time t, ΠC
t =

(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the

nominal wage and Λt,t+1 is the nominal stochastic discount factor of the household.

Total final consumption Ct is given by an aggregator over sector-specific varieties:

Ct = C(C1,t, ..., CN,t) (3)

where C(·) is homogeneous of degree one and non-decreasing in each of the arguments. The

household chooses consumption of each of the sector-specific varieties to minimize total expen-

diture
∑

i Pi,tCi,t, subject to the aggregator in (3). The minimal cost of assembling such a

basket of sectoral varieties aggregating to Ct = 1 pins down the consumption price index as

PC
t = PC(P1,t, ..., PN,t), where PC is homogeneous of degree one and non-decreasing in each of

the arguments.

Sectoral final consumption Ci,t is in turn given by the following aggregator over firm-specific

varieties:

Ci,t =
{∫ 1

0
[ζi,t(j)Ci,t(j)]

ϵ−1
ϵ dj

} ϵ
ϵ−1

, (4)

where ϵ > 1 is the within-sector elasticity of substitution, Ci,t(j) is the final demand for the

output of firm j ∈ [0, 1] in sector i at time t, and ζi,t(j) is a firm-specific idiosyncratic quality

process. The quality process follows a random walk in logs:

log ζi,t (j) = log ζi,t−1 (j) + σiεi,t (j) , (5)
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where εi,t(j) is an i.i.d. Gaussian innovation with mean zero and standard deviation of one.

The final demand for firm j in sector i is given by:

Ci,t(j) = ζi,t(j)ϵ−1
(
Pi,t(j)
Pi,t

)−ϵ

Ci,t, (6)

and the sectoral price index of sector i is given by:

Pi,t =

∫ 1

0

(
Pi,t(j)
ζi,t(j)

)1−ϵ

dj

 1
1−ϵ

. (7)

The representative household is also subject to a cash-in-advance constraint, which requires

that the nominal money holdings are sufficient to cover the aggregate nominal final demand:

PC
t Ct ≤ Mt. (8)

The aggregate money supply process {Mt}t≥0 is set by the central bank, and agents treat this

process as exogenous. An alternative is to consider a central bank which conducts monetary

policy by setting the nominal interest rate according to a Taylor rule; we consider such an

extension in Section 7.1.

We now specify the functional forms for household preferences. First, for household prefer-

ences over aggregate consumption and labor supply, we use the log-linear preferences of Golosov

and Lucas (2007):

Assumption 1 (Golosov-Lucas preferences). The utility function over consumption and labor

supply is log-linear: u(Ct, Lt) = logCt − Lt.

Under such preferences, we obtain the following intra-temporal labor supply condition: Wt

P C
t

=

Ct. When combined with the cash-in-advance constraint (8), it implies that the nominal wage

equals money supply in every period: Wt = Mt. In addition, the nominal stochastic discount

factor satisfies: Λt,t+1 = β
P C

t Ct

P C
t+1Ct+1

= β Mt
Mt+1

.

As for aggregation across final consumption of sectoral varieties, in the baseline model we

assume it to take the Cobb-Douglas form:

Assumption 2 (Consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) = ιC
N∏

i=1
C

ωC
i,t

i , (9)
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where ιC ≡
∏N

i=1 ω
C
i

−ωC
i is a normalization term and

∑
i ω

c
i = 1, ωc

i ≥ 0,∀i.

Under this assumption, the equilibrium sectoral final consumption shares are constant over

time: ωC
i,t ≡ Pi,tCi,t

P C
t Ct

= ωC
i . In Section 7.3 we consider a more general CES aggregator over

sectoral consumption varieties.

2.3 Firms: production

The production function of firm j in sector i is given by:

Yi,t(j) = 1
ζi,t(j)

×Ai,t × Fi [Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] , (10)

where Fi(·) is homogeneous of degree one and non-decreasing in inputs; Li,t(j) is the labor used

by firm j in sector i at time t, Xi,k,t(j) is intermediate inputs bought by firm j in sector i from

sector k at time t. In addition, Ai,t is an exogenous sector-specific total factor productivity

process, while ζi,t(j) is the firm-level idiosyncratic quality process introduced in (5).

The intermediates demand Xi,k,t(j) is in turn an aggregator over intermediates bought from

each firm in sector k:

Xi,k,t(j) =
{∫ 1

0

[
ζk,t(j′)Xi,k,t(j, j′)

] ϵ−1
ϵ dj′

} ϵ
ϵ−1

, (11)

where Xi,k,t(j, j′) is intermediates bought by firm j in sector i from firm j′ in sector k, which sat-

isfies the following demand condition in equilibrium: Xi,k,t(j, j′) = ζk,t(j′)ϵ−1
(

Pk,t(j′)
Pk,t

)−ϵ
Xi,k,t(j).

Each firm chooses its labor and intermediate inputs in order to minimize the total cost

of production, subject to the production technology in (10). The latter delivers the following

marginal cost function for firm j in sector i at time t:

MCi,t(j) = ζi,t(j) × Qi(Wt, P1,t, ..., PN,t;Ai,t) (12)

where Qi(·) is the common component of the marginal cost index for all firms within a sector,

which strictly falls in Ai,t and is homogeneous of degree one and non-decreasing in the prices of

all inputs.

In our baseline model, we assume that production technology takes a Cobb-Douglas form

for all firms in all sectors:
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Assumption 3 (Production technology). The production technology Fi(·) for a firm j in sector

i is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = ιiLi,t(j)αi

N∏
k=1

Xi,k,t(j)ωik , (13)

where ιi ≡ α−αi
i

∏
ω−ωik

ik is a normalization term and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Under this assumption, the equilibrium labor cost shares and the input-output cost shares

are constant over time and the same for all firms within a sector: αi,t ≡ WtLi,t(j)
MCi,t(j)Yi,t(j) =

αi, ωi,k,t ≡ Pk,tXi,k,t(j)
MCi,tYi,t(j) = ωik. As with household preferences, in Section 7.3 we relax the

Cobb-Douglas assumption and consider a more general CES production function.

2.4 Firms: equilibrium size

The goods market clearing condition for firm j in sector i is given by:

Yi,t(j) = Ci,t(j) +
N∑

k=1

∫ 1

0
Xk,i,t(j′, j)dj′. (14)

Aggregating up to the level of sectors, multiplying both sides by Pi and dividing by aggregate

final nominal demand PC
t Ct, one can express the sectoral sales share (Domar weight) λi ≡ Pi,tYi,t

P C
t Ct

as:

λi,t = ωC
i,t +

N∑
k=1

ωki,tλk,t × µ−1
k,t , (15)

where µ−1
k is the sales-weighted harmonic average of firm-level markups in a sector k : µ−1

k,t =∫ 1
0

1
µk,t(j′) × Pk,t(j)Yk,t(j)

Pk,tYk,t
dj. Using the downward sloping demand condition for each firm, one can

rewrite µ−1
k,t as:

µ−1
k,t = ∆k,t

Mk,t
, ∆k,t ≡ (Pk,t/Mt)ϵ

∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′, Mk,t ≡ Pk,t

Qk,t
, (16)

where ∆k,t is a measure of price dispersion within the sector and Mk,t is a measure of sectoral

markup. Stacking the equation for sales shares across sectors, we can write it as:

λt = ωC ,t + Ω̃T
t λt =⇒ λt = (I − Ω̃T

t )−1ωC ,t (17)
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where Ω̃t is a N×N matrix whose [i, j] entry is given by [Ω̃t]i,j = ωij,t

{
∆i,t

Mi,t

}
. Having calculated

the sectoral sales shares, one obtains the sectoral total output as Yi,t = λi,t ×Mt/Pi,t and then

the size of an individual firm as Yi,t(j) = ζi,t(j)ϵ−1
(

Pi,t(j)
Pi,t

)−ϵ
Yi,t.

2.5 Firms: pricing

The nominal profit of firm j in sector i at time t is given by:

Di,t(j) = [(1 − τi,t)Pi,t(j) −MCi,t(j)] × Yi,t(j), (18)

where τi,t is an exogenous sector-specific and time-varying sales tax levied by the government.3

Denoting by P̃i,t(j) ≡ Pi,t(j)
ζi,t(j)Mt

the firm’s quality-adjusted real price and by P̃i,t ≡ Pi,t

Mt
the

sectoral real price index, we can write the firm-level real profits D̃i,t(j) ≡ Di,t(j)
Mt

as:

D̃i,t(j) =
(
Pi,t

Mt

)ϵ−1
×
[
(1 − τi,t)

Pi,t(j)
ζi,t(j)Mt

− Qi,t

Mt

]
×
(

Pi,t(j)
ζi,t(j)Mt

)−ϵ

× λi,t

= D̃

(
P̃i,t(j), τi,t,

{
P̃k,t,∆k,t, Ak,t

}N

k=1

)
. (19)

Note that keeping track of the firm-level real profits requires knowing the firm’s real quality-

adjusted price, the own sectoral sales tax, as well as the real sectoral prices, price dispersions

and productivities of all sectors in the economy.

Resetting the nominal price Pi,t(j) involves the firm paying a sector-specific and possibly

time-varying menu cost κi,t measured in units of labor. The optimal reset price maximizes the

firm’s value, taking into account that this new price may not change for some period of time.

In particular, when the nominal price does not change, the log of quality-adjusted real price

pi,t(j) ≡ log P̃i,t(j) evolves according to

pi,t(j) = pi,t−1(j) + log
(
Pi,t−1(i)
ζi,t(j)Mt

)
− log

(
Pi,t−1(j)

ζi,t−1(j)Mt−1

)
= pi,t−1(j) − σiεi,t −mt, (20)

where mt ≡ ∆ logMt.

Without loss of generality, let ηi,t(p) denote the probability that a firm in sector i with a

quality adjusted log relative price p resets its price at t . Consider a firm with a real quality
3The proceeds of these taxes are then rebated to households as a lump-sum transfer Tt =∑N

i=1 τi,t

∫ 1
0 Pi,t(j)Yi,t(j)dj.
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adjusted price p at the end of period t, and let p+ ≡ (p− σiεi,t+1(j) −mt+1). Then this firm’s

real value at the end of period t is given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) + βEt

[
{1 − ηi,t+1 (p+)}Vi,t+1(p+) + ηi,t+1 (p+)

(
max

p′
Vi,t+1

(
p′)− κi,t+1

)]
,

(21)

which consists of the current period real profits D̃i,t(p), as well as the discounted expected

continuation value. The latter is computed taking into account that at time t+ 1 the nominal

price does not change with probability 1 − ηi,t+1(·), whereas with probability ηi,t+1(·) the firm

pays the menu cost and optimally resets the nominal price.

Our formulation of the pricing problem covers a wide range of existing models of price

setting, corresponding to the different functional forms of ηi,t(·). In the baseline setup of our

model, we consider a specific functional form for the probability of adjustment function ηi,t(·).

In particular, following Golosov and Lucas (2007), we assume that a firm adjusts if and only if

the value gain from adjustment in a given period exceeds the menu cost:

Assumption 4 (Ss pricing). Consider a firm in sector i with the quality adjusted log relative

price p at time t. Then the probability that this firm adjusts its nominal price is given by:

ηi,t(p) = 1(Li,t(p) > 0) (22)

where 1(·) is the indicator function, and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi,t (23)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Note that although here we specify a problem of price setting under nominal rigidities,

our setup can automatically handle rigidities in nominal wage setting as well by appropriately

parameterizing the input-output structure. In particular, consider a setup with a sector called

the labor union (LU), such that it only uses labor in production (αLU = 1) and moreover

it is the only sector purchasing labor directly from households (α−LU = 0). Instead, other

sectors purchase labor indirectly from the labor union as an intermediate input, such that ωi,LU

represents the empirical cost share of labor for sector i. Then any rigidities in the price setting of

the labor union sector are isomorphic to nominal wage rigidities. Moreover, the gap between the
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nominal wage Wt and the price index of the labor union sector PLU,t has a natural interpretation

as the aggregate labor wedge.4

2.6 Equilibrium definition and solution method

In addition to the goods market clearing condition in (14), the equilibrium in our economy is

also characterized by clearing of the labor market:

Lt =
N∑

i=1

∫ 1

0
Li,t(j)dj +

N∑
i=1

κi,t

∫ 1

0
ηi,t(pi,t(j))dj, (24)

as well as by clearing in the market for bonds, which are in zero net supply: Bt = 0.

Having specified the optimality and market clearing conditions, we can now formally define

the decentralized equilibrium in our economy:

Definition 1 (Equilibrium). The equilibrium is a collection of prices {Pi,t(j)|j ∈ Φi}N
i=1, al-

locations
{
Yi,t(j), Li,t(j), Ci,t(j), {Xi,r,t(j, j′)|j′ ∈ Φr}N

r=1 |j ∈ Φi

}N

i=1
, wage Wt and bond hold-

ings Bt, which given the realizations of firm-level quality process {ζi,t(j)|j ∈ Φi}N
i=1, sectoral

productivities {Ai,t}N
i=1, sectoral sales tax rates {τi,t}N

i=1 and money supply Mt satisfy agent

optimization and market clearing conditions in every period.

We now briefly outline our solution strategy, which we use to compute equilibrium prices and

quantities given the realizations of exogenous processes. Full details of the numerical strategy

are given in Appendix C.

As a first step, we compute the steady-state of our economy, defined as the equilibrium

evaluated at the point where money supply growth and sectoral TFPs are at their unconditional

mean values, and the firm-level prices are in their stationary distribution. In particular, for each

sector we numerically solve the stationary Bellman equation and firms’ price distributions on an

evenly spaced grid of log quality adjusted real prices with step size ∆p, pj ∈
[
p, p+ ∆p, ..., p

]
,

j = 1, .., J grid points, so that Vj = V (pj). In the algorithm, introduced in Appendix C, we

jointly search across firm-level prices in each sector and sector-specific sales taxes {τ i}N
i=1, so

that we satisfy the equilibrium conditions and obtain steady-state real sectoral price indices

equal to one.

Next, we compute the non-linear responses to a sequence of monetary and TFP shocks. We

operate under the assumption of perfect foresight over aggregate and sectoral exogenous shocks,
4More formally, the labor wedge is the gap between the nominal marginal rate of substitution across con-

sumption and labor P C
t × MRSCL

t = Wt and the nominal cost of labor faced by firms PLU,t.
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while maintaining uncertainty over the idiosyncratic innovations. To compute the responses, we

first assume that there exists a finite period T , at which the economy is back in steady state.

Then, starting from a guess for the sequences of sectoral and aggregate variables, we iterate

backward from t = T to t = 0 to solve for the micro value functions. Having obtained the micro

value functions, we iterate forward from t = 0 to t = T , and numerically aggregate to obtain

sectoral and aggregate variables. We repeat this backward-forward iteration until convergence.

Appendix C formally details the algorithm to perform the backward-forward iteration.

3 Pricing cascades and networks: formal results

We now use a simplified version of our model in order to formally introduce the notion of pricing

cascades: large movements in aggregates creating possibly self-reinforcing price adjustment

decisions at the extensive margin. Moreover, we present analytical results regarding the novel

interaction of pricing cascades with networks. In particular, we formally show that networks

dampen cascades whenever the aggregate cycle is driven by demand shocks, whereas they amplify

cascades driven by supply shocks. We also present several examples with particular network

arrangements in order to solidify the intuition behind our novel theoretical results.

3.1 Static economy

In order to obtain intuition regarding the transmission of large shocks in our model, we consider

a simplified setup obtained under two additional assumptions. First, we assume the economy

to be static in the sense that agents fully discount the future:

Assumption 5 (Myopia). Agents fully discount the future in their objective function, so that

β = 0.

In particular, this setting implies that any firm’s value function is simply given by contempo-

raneous profits, and hence the optimal quality-adjusted real reset price for any firm in a sector

i is given by:

P̃ ∗
i,t = 1

1 − τi,t

ϵ

ϵ− 1 × 1
Ai

N∏
k=1

P̃ωik
i,t = Γi,t × Q̃i,t. (25)

where Γi,t ≡ 1
1−τi,t

ϵ
ϵ−1 is the (exogenous) desired markup, whose variation across time and

sectors is pinned down by the movements in the sectoral tax rates τi,t.

Second, we assume a specific form of time-variation of the sector-specific menu cost κi,t:

15



Assumption 6 (Sectoral menu costs). The sector-specific menu cost follows the following pro-

cess: κi,t = κi(1 − τi,t)[P̃i,t/P̃
∗
i,t]ϵ−1λi,t, where κi is a sector-specific constant.

The above two assumptions allow us to derive closed-form results regarding the interaction

between networks, price adjustment decisions at the extensive margin, and the type of shocks

hitting the economy.

The decision to change prices is based on whether the value gain from adjustment exceeds

the menu cost. In the static setup, we can obtain a tractable approximation for the gain from

adjustment as a function of the price gap, or the difference between the current and the optimal

reset price:

Lemma 1 (Adjustment gains). Suppose Assumptions 1-5 hold. Let p̃i,t(j) ≡ log P̃i,t(j)− log P̃ ∗
i,t

be the price gap for a firm j in sector i at time t. Then the profit gain from price adjustment

satisfies:

D̃∗
i,t(j) − D̃i,t(j) = 1

2(ϵ− 1)(1 − τi,t)[P̃i,t/P̃
∗
i,t]ϵ−1λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)]3 (26)

where D̃∗
i,t(j) is profits at the optimal reset price, Pi,t is the real sectoral price index and λi,t is

the sectoral sales share (Domar weight).

To illustrate the interaction between networks and price adjustment decisions, consider the

initial period (t = 0) in our economy. If the firm chooses to not adjust its nominal price, then

the quality-adjusted real price in the initial period is given by:

log P̃i,0(j) = pi,−1(j) − σiεi,0(j) −m0 (27)

where pi,−1(j) is the initial (exogenous) quality-adjusted real price of firm j in sector i, εi,0(j)

is the realization of the firm-level quality shock in period t = 0, and m0 ≡ log(M0/M−1) is the

realization of money growth at t = 0. Given the expression for the optimal reset price in (25),

we can write the firm-level price gap in the initial period as:

p̃i,0(j) = −σiεi,0(j) −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 + (pi,−1(j) − γi). (28)

where γi ≡ log ϵ
ϵ−1

1
1−τ i

, ai,0 ≡ logAi,0 and γi,0 ≡ log Γi,0 − γi.

Without loss of generality, normalize pi,−1(j) = log ϵ
ϵ−1 ; then given the realizations of aggre-

gate and sectoral variables, the magnitude of the price gap of the specific firm j is pinned down
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Figure 1: Networks and inaction regions

(a) Cascades dampening under monetary shocks

(b) Cascades amplification under TFP/markup shocks

Notes: Panel (a) considers a monetary expansion and visualizes the effect of production networks on the location of the
inaction region; Panel (b) considers an aggregate TFP contraction, similarly showing the effect of production networks on
the location of the inaction region.

by the realization of its idiosyncratic quality innovation εi,0(j). We can use the approximate

profit gain in Lemma 1 to determine the sector-specific inaction regions, defining the ranges for

idiosyncratic innovations under which the firm will choose not to adjust:

Lemma 2 (Inaction region). Suppose Assumptions 1-6 hold. Given the realizations of aggregate

and sectoral variables and normalizing pi,−1(j) = log ϵ
ϵ−1

1
1−τ i

, let εi,0 and εi,0 be thresholds such

that a firm in sector i will not adjust the price if it draws an innovation in [εi,0, εi,0]. Then,

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ− 1 , (29)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 − γi, ai,0 ≡ logAi,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

.

Given the realizations of monetary, productivity, and desired markup shocks, which are

independent of the presence of input-output linkages, we can now derive the effect of removing

input-output linkages (ωi,k = 0,∀i, k) on the firm-level decision to adjust its price.

Consider an increase in the money supply m0 > 0. According to Lemma 2, this increase in
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money supply, ceteris paribus, implies a leftward shift of the inaction region. In other words,

more extreme (negative) realizations of idiosyncratic innovations are needed to prevent adjust-

ment. At the same time, Lemma 2 also implies that as long as the pass-through of the money

supply to sectoral prices is incomplete (log P̃k,0 < 0,∀k), the presence of networks attenuates the

leftward shift of the inaction region for all firms that have a non-zero cost share of intermediate

inputs. As a result, this weakly lowers the probability of price adjustment for any firm, creat-

ing dampening in price changes. Panel (a) of Figure 1 provides a graphical illustration of this

mechanism. In the following proposition, we formalize the notion that, all else fixed, networks

decrease the firm-level probability of adjustment following a monetary shock, thus dampening

cascades:

Proposition 1 (Cascades and demand shocks). Suppose Assumptions 1-6 hold. Consider an

increase in the money supply m0 > 0. Then, as long as the pass-through of the money sup-

ply to sectoral prices is incomplete (log P̃k,0 < 0,∀k), production networks (weakly) lower the

probability of adjustment for any firm following the monetary shock.

In contrast, consider a sectoral productivity deterioration ai,0 < 0. According to Lemma 2,

this productivity change creates a leftward shift of the inaction region for all firms in sector i.

Moreover, as long as this productivity decline leads to a rise in price indices of other sectors

(log P̃k,0 > 0,∀k), then Lemma 2 also implies that networks further amplify the leftward shift

in the inaction region for all firms in sector i, as long as the cost share of intermediates in that

sector is non-zero. In other words, even more extreme (negative) realizations of idiosyncratic

innovations are needed to justify non-adjustment. As a result, contrary to the case of monetary

shocks, the presence of networks weakly raises the probability of price adjustment for any firm

in sector i, thus amplifying pricing cascades. Panel (b) of Figure 1 illustrates this mechanism

graphically.

Note that an identical mechanism of cascades also applies in the case of shocks to desired

markups. Following an increase in desired markups, γi,0 > 0, there is a leftward shift in the

inaction region, which is further moved to the left as long as the markup shock is inflationary in

the aggregate (log P̃k,0 > 0,∀k). In the following, we formalize the notion that networks create

cascades in price adjustment decisions after TFP and markup shocks:

Proposition 2 (Cascades and supply shocks). Suppose Assumptions 1-6 hold. Consider a

decrease in sectoral TFP ai,0 < 0 or an increase in sectoral desired markup γi,0 > 0. Then, as
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long as such shocks lead to a rise in price indices of other sectors (log P̃k,0 > 0,∀k), production

networks (weakly) increase the probability of adjustment for any firm in any other sector.

In addition, note that a productivity or desired markup shock in a sector i can, in principle,

increase the probability of price adjustment for firms in any other sector i′. This is true as long

as the price indices of sectors used as suppliers by sector i′ (k : ωi′k > 0) rises following the

productivity deterioration or markup increase in sector i.

3.2 Simple examples

We now solidify the intuition behind the formal results on cascades with the aid of several

examples. In particular, we return to the dynamic version of our model, but consider concrete

network arrangements in order highlight the key mechanisms. To facilitate further comparability

between monetary and TFP shocks, for the remainder of this subsection we assume that both

follow AR(1) in levels with persistence ρ ∈ (0, 1).

Example 1 : roundabout production economy

First, we consider a one-sector (N = 1) roundabout economy, where firms trade intermediate

inputs with other firms in the same sector, as in the work of Basu (1995). Figure 2(a) illustrates

such an arrangement graphically. Naturally, in the limit where we set the cost share of labor

to one (α1 = 1), the one-sector economy collapses to that of Golosov and Lucas (2007), where

firms only use labor in production.

We use this simple example to illustrate how the presence of the network affects the response

of the aggregate fraction of adjusting firms to monetary and productivity shocks of different

sizes. As can be seen in the bottom panel of Figure 2(a), when there are no networks (α1 = 1),

monetary and productivity shocks are isomorphic in their effect on aggregate frequency. How-

ever, as soon as we add the roundabout production structure (α1 < 1), the aggregate adjustment

frequency responds much faster to productivity shocks relative to monetary shocks. This is be-

cause under monetary shocks, the network structure shrinks the desired price changes and the

price gaps, thus dampening cascades, which leads to slower increases in the aggregate fraction

of adjusters. In contrast, under TFP shocks, the presence of networks expands movements

in desired price changes and hence the price gaps, thus amplifying cascades at the firm-level,

leading to faster increases in the aggregate fraction of adjusters.
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Figure 2: Three example economies

(a) Roundabout production economy (b) Two-sector vertical chain economy (c) N -sector vertical chain economy

Notes: the figure shows three example economies, as well as the responses of aggregate frequency of adjustment to
monetary and aggregate TFP shocks. In each example, all sectors are calibrated to have the same frequency and standard
deviation of price changes in steady state.

Example 2 : two-sector vertical chain economy

For our second example, we consider a two-sector economy (N = 2), which illustrates how the

position of a sector in the network affects the transmission of sectoral productivity shocks to

aggregate frequency. The top panel of Figure 2(b) presents the arrangement graphically: the

upstream sector (U) only uses labor in production and supplies its output as an intermediate

input to the downstream sector (D). Importantly, the two sectors have the same size in steady-

state equilibrium, in the sense of having identical (cost-based) Domar weights. Moreover, their

pricing moments are also the same in steady-state, hence their only ex ante difference comes

from the position in the network.

We now consider sector-specific productivity shocks of different sizes and record their effect

on the aggregate adjustment frequency. In the bottom panel of Figure 2(b) one can see that

large shocks to the upstream sector deliver faster increases in the aggregate frequency, relative

to equally sized shocks to the downstream sector. This is another way in which networks

amplify cascades: shocks to the upstream sector affect the marginal cost, the optimal reset
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price, and hence the price gaps, of the downstream sector. As a result, shocks to the upstream

sector trigger extensive margin price adjustment decisions both in the upstream and in the

downstream sector. The opposite, however, is not true: shocks to the downstream sector only

affect price gaps in the downstream sector itself and do not affect price adjustment decisions in

the upstream sector.

This simple example illustrates an important point: when it comes to the effect of a sector-

specific shock on aggregates, the position of the shocked sector in the network can matter over

and above its size. In particular, here shocks to the upstream sector have a stronger effect on

aggregate adjustment frequency, even though it is as large as the downstream sector in steady

state. This runs contrary to a number of established network-irrelevance results, where the

presence of networks make no difference over and above its effect on equilibrium size (Hulten,

1978; Baqaee and Farhi, 2020).

Example 3 : N-sector vertical chain economy

With our third example, we would like to illustrate how the interaction between the network

position and pricing cascades extends beyond the two-sector arrangement. In particular, as

depicted in the top panel of Figure 2(c), we consider an N -sector vertical chain economy. In

such a setup, Sector 1 is the most upstream sector, which uses labor to produce a good that

is supplied as an intermediate to Sector 2, which then supplies intermediates to Sector 3 and

so on. Sector N is the least upstream sector, as it sells everything it produces as a final good

to households. As before, all the N sectors have the same steady-state pricing moments and

are equally big in the sense of having identical (cost-based) Domar weights. The only relevant

dimension of heterogeneity is their position in the network.

In the bottom panel of Figure 2(c), we set N = 10 and plot the aggregate frequency response

to large (−20%) sector-specific productivity shock to each sector. One can see that the shock to

the most upstream Sector 1 delivers the largest increase in aggregate frequency. Moreover, the

aggregate frequency response falls monotonically as we move down the supply chain and consider

increasingly less upstream sectors. As before, this represents the interaction of networks with

pricing cascades: shocks to more upstream sectors affect, directly or indirectly, marginal costs

and hence price gaps in a larger number of sectors, thus triggering a bigger increase in aggregate

adjustment frequency.
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4 Full model with Euro Area data

We now move to the quantitative analysis of our full dynamic model. In this section we out-

line the strategy to bring our model to the Euro Area data. In particular, we discipline the

structural parameters of the model in order to make it consistent with the Euro Area economy

disaggregated to 38 sectors. The household preferences and firms’ production function param-

eters are estimated to match the observed consumption and input-output shares in the World

Input-Output Tables. As for the sector-specific menu costs and variances of idiosyncratic shocks,

those are estimated to fully match the observed sectoral frequencies and standard deviations of

price changes in the PRISMA dataset for the Euro Area.

4.1 Parameterization and Calibration

We discipline the structural parameters of our model to the Euro Area data at monthly fre-

quency. Table 1 summarizes our calibration.

For the aggregate parameters, the households’ discount factor is set to β = 0.961/12 as in

Golosov and Lucas (2007). The within-sector elasticity of substitution across varieties is ϵ = 3

as in Midrigan (2011). We assume that aggregate money supply follows a random walk with

drift:

logMt = π + logMt−1 + εM
t , (30)

where π is the trend growth rate for money supply, which is also the equilibrium level of trend

inflation; εM
t is an i.i.d. mean zero money growth innovation. The steady-state money growth

rate is π = 2% per year, in line with the inflation target of the European Central Bank (ECB).

As for the sectoral total factor productivities, we assume those to follow an AR(1) process:

logAi,t = ρ logAi,t−1 + εA
i,t, (31)

where ρ ∈ (0, 1) is the persistence parameter and εA
i,t is an i.i.d. mean zero sector-specific

productivity innovation. We set the persistence of TFP processes equal to ρ = 0.9.

We calibrate our economy to 38 production sectors of the Euro Area economy, following

the classification in the World Input-Output Database (WIOD). The final consumption shares

{ωC
i }N

i=1 and the input-output cost shares {ωik}N
i,k=1 are taken from the 2014 input-output

tables for the Euro Area based on WIOD.5 Regarding the sectoral cost shares of labor {αi}N
i=1,

5We make use of the EMuSe Calibration Toolkit developed by Hinterlang et al. (2023), which constructs the
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they are taken from the 2014 National Income Accounts for the Euro Area, published by the EU

KLEMS database.6 In order to capture the possibility that wages are also sticky, we introduce

an auxiliary labor union sector. In particular, we assume that the labor union sector is the only

one that directly purchases labor from households and then sells it to the rest of the sectors as

an intermediate input. In general, we work with N = 39 sectors: 38 production sectors and the

auxiliary labor union sector.

Unlike in Section 3.1 above, we do not allow time variation in the sectoral menu costs.

Instead, we consider the more conventional fixed menu cost setup (Golosov and Lucas, 2007),

allowing the menu costs to vary in the cross section only:

Assumption 6′ (Fixed menu costs). The sector-specific menu cost follows the following process:

κi,t = κi, where κi is a sector-specific constant.

This leaves us with two parameters per sector to estimate: the menu cost κi, and the

standard deviation of firm-level shocks σi. In line with evidence in Gautier et al. (2023), we

assume that the sectors “Coke and Petroleum Products” and “Mining and Quarrying” have

fully flexible prices at monthly frequency. We calibrate the price setting parameters in the

labor union sector to match the frequency and standard deviation of nominal wage changes in

Costain et al. (2022). For the remaining 36 sectors, we estimate the parameters {κi}N
i=1 and

{σi}N
i=1 to match the frequency and standard deviation of price changes in each sector in the

Euro area, taken from Gautier et al. (2024), in steady state.

We also parameterize two auxiliary economies, for the purpose of benchmarking them against

our baseline setup. First, we estimate the firm-level pricing parameters in a counterfactual econ-

omy without input-output linkages, for the same set of sector-specific frequencies and standard

deviations of price changes in steady state. Such an economy features no linkages across the 38

production sectors, which are only linked to the labor union sector instead (ωi,LU = 1,∀i ̸= LU).

Second, we consider an economy with input-output linkages, but featuring time-dependent price

setting as in Calvo (1983). The latter setup corresponds to having constant sector-specific pric-

ing hazards (ηi(p) = ηi, ∀i) and zero menu costs (κi = 0,∀i). We therefore estimate sector-

specific constant hazards and variances of idiosyncratic shocks to match the same sectoral

frequencies and standard deviations of price changes as in the steady state of our baseline

setup.

Euro Area input-output table by combining accounts of individual countries in the WIOD.
6The database is at https://economy-finance.ec.europa.eu/economic-research-and-databases/

economic-databases/eu-klems-capital-labour-energy-materials-and-service_en.
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Table 1: Parameter values (Euro Area, monthly)

Aggregate parameters

β 0.961/12 Discount factor (monthly) Golosov and Lucas (2007)
ϵ 3 Goods elasticity of substitution Midrigan (2011)
π 0.02/12 Trend inflation (monthly) ECB target
ρ 0.90 Persistence of the TFP shock Half-life of seven months

Sectoral parameters

N 39 Number of sectors Data from Gautier et al. (2024)
{ωC

i }N
i=1 Sector consumption weights World IO Tables

{ωik}N
i,k=1 Sector input-output matrix World IO Tables

{αi}N
i=1 Sector labor weights World IO Tables

Firm-level pricing parameters

{κi}N
i=1 Menu costs Estimated to fit frequency, std dev.

{σi}N
i=1 Std. dev. of firm-level shocks of ∆p from Gautier et al. (2024)

4.2 Sectoral characteristics

In order to better understand the cross-sectional properties of the sectors we consider in our

quantitative setup, we introduce two different measures of sectoral centrality. First, in order to

capture the full degree to which a sector is important as a buyer of intermediate inputs from

the rest of the economy, we use the following customer centrality metric:

Customer Centralityi ≡
N∑

j=1
(I − Ω)−1

ij − 1 (32)

where [Ω]ij = ωij is the matrix of input-output cost shares. Intuitively, the customer centrality

measure captures the total reliance of a sector on intermediate inputs, both direct and indirect.

Naturally, if a sector only uses labor in production, its customer-centrality measure collapses

to zero. Table B.1 in the Appendix reports the customer centrality measure for each of the

38 production sectors. The two sectors with the largest customer centrality are ”Coke and

petroleum products” (4.35) and ”Chemicals and chemical products” (4.25), followed by ”Paper

and paper products” (3.97) and ”Food and beverages” (3.94), while the smallest customer

centrality is in ”Education” (1.55).

Second, in order to capture the degree to which a sector is important as a provider of

intermediate inputs to the rest of the economy, we introduce the following supplier centrality

metric:
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Supplier Centralityi ≡
N∑

j=1
(I − ΩT )−1

ij − 1 (33)

The supplier centrality measure captures the total importance of a sector as a seller, either

directly or indirectly, of intermediate inputs to the rest of the economy. The value of supplier

centrality for each of the 38 production sectors is reported in Table B.1. The distribution of

supplier centrality features a heavy right tail, with three sectors having a disproportionally

larger measure than the rest: those are ”Administration and support” (7.59), ”Legal, account-

ing, management” (6.51) and ”Chemicals and chemical products” (6.18). The sector with the

smallest supplier centrality is ”Fishing and aquaculture” (0.11).

5 Quantitative results: monetary shocks

For our first set of quantitative results, we present the general equilibrium dynamics of our

economy following monetary shocks of different sizes. First, we show that the aggregate repricing

frequency response to large monetary shocks is substantially attenuated by the presence of

networks, so that the effect of cascades dampening is quantitatively sizable. As a result, the

economy with networks features much stronger monetary non-neutrality, which manifests in a

substantial flattening of the fully non-linear Phillips Curve. Second, we study sectoral frequency

and price responses, and show that, ceteris paribus, sectors with a larger customer centrality

exhibit smaller movements in the fraction of adjusting firms and feature less size-dependence in

their sectoral price responses.

5.1 Aggregate dynamics

Figure 3(a) shows the scaled (per % shock) responses of aggregate CPI inflation, aggregate

GDP, as well as the unscaled fraction of adjusting firms following one-time monetary shocks

of two different magnitudes: εM
0 = 1% and εM

0 = 10%. Two key features are apparent. First,

the scaled response of inflation increases in the size of the monetary shock, which represents

a strong size effect. As can be seen in the frequency panel, this happens as the fraction of

adjusting firms increases rapidly with larger shocks, reaching almost 30% for the 10% monetary

shock.

Second, as shown in Figure 3(b), the contribution of production networks to the magnitudes

of responses differs markedly between shocks of different sizes. For the small 1% shock, networks
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Figure 3: Aggregate responses and network contribution under monetary shocks

(a) Responses of aggregates to monetary shocks

(b) Network contribution to aggregates’ responses

Notes: Panel (a) shows the the responses of aggregate GDP, CPI inflation and aggregate adjustment frequency following
1% and 10% one-time monetary shocks in the baseline economy with fixed menu costs and networks; Panel (b) additionally
shows the corresponding responses in the otherwise identical economy without networks.
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Figure 4: Extensive margin response to monetary shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following monetary shocks of different
sizes in the baseline economy with fixed menu costs and networks, as well as in the otherwise identical economy without
networks; Panel (b) uses the decomposition in (34) to show the proportional contributions of the Calvo, Extensive and
Selection components to the effect of networks on the impact response of CPI inflation to monetary shocks of different
sizes.

dampen the response of inflation and, as a result, amplify the response of aggregate GDP. This

is the effect of production networks known from the prior literature, which employs linearized

models with time-dependent pricing: input-output linkages create pricing complementarities,

dampening inflation and amplifying the consumption response. At the same time, for the large

10% shock, the amplification of the aggregate GDP response due to networks is much greater.

Importantly, this is because the 10% monetary shock delivers a markedly smaller increase in the

repricing frequency relative to the economy without networks, which is the cascades dampening

effect introduced earlier.7

In Figure 4(a), we further investigate the interaction between networks and the response

of repricing frequency by looking at a wide range of shock sizes and signs. One can see that

networks consistently dampen the response of aggregate repricing frequency to monetary shocks

of all sizes that we consider. For example, following a 10% monetary expansion, the aggregate

frequency rises close to 45% in the multi-sector economy without networks, but increases only to

27% in an otherwise identical economy with input-output linkages. In this sense, the aggregate

consequences of cascades dampening by networks is quantitatively sizable.
7In Figure E.1 we construct, for each size of the monetary shock, the difference between the output response

with and without networks, as a fraction of the former. One can see that for small monetary shocks, the
contribution is in the neighborhood of 10-20%. Such magnitudes are consistent with prior estimates of network
contributions in linearized time-dependent setups (Ghassibe, 2021). As the size of the shock increases, however,
the contribution of the network increases dramatically, reaching almost 80% for a 15% monetary expansion.
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We also quantify the contribution of cascades dampening to the response of aggregate infla-

tion. To do that, we follow Costain and Nakov (2011) and Blanco et al. (2024a) in making use

of the following inflation decomposition:

∆π = ∆πCalvo + ∆πExtensive + ∆πSelection, (34)

where ∆π is the deviation of (net) aggregate CPI inflation rate from its steady-state value,

∆πCalvo is the inflation component attributed purely to the change in the intensive margin

of price changes (holding fixed the fraction and composition of adjusters), ∆πExtensive is the

component driven exclusively by the change in the fraction of adjusters and ∆πSelection stands for

the component driven by changes in the composition of adjusters.8 Crucially, the decomposition

holds both in the economy with and without networks, allowing us to compute the contribution

of each of the three components to the difference in inflation response driven by the input-

putput linkages. Figure 4(b) shows the resulting decomposition: the difference is explained

mainly by the selection effect for smaller shocks, and by the extensive margin component for

shocks greater than 5 percent in absolute value. Therefore, for large shocks, most of the network

contribution to the slowing down of the inflation response works through the extensive margin

effect, representing the dampening of cascades.

Not only is the cascades dampening effect important in relative terms, it also has substantial

implications for the absolute magnitudes of responses in CPI inflation and aggregate GDP to

large monetary interventions. In Figure 5(a), we show that as the size of the monetary shocks

increases, inflation in our baseline economy rises in a non-linear fashion: a 5% shock delivers 2%

inflation on impact, whereas tripling the shock to 15% delivers a five-fold increase of inflation

to 10%. At the same time, the figure also shows that an otherwise identical economy without

networks features inflation rising even faster with larger monetary shocks. The fact that inflation

rises relatively more slowly in the economy with networks reflects mainly the slower response

of the fraction of adjusters, as documented in Figure 4. In order to quantify the importance

of nonlinearity and state-dependent pricing, in Figure 5 (a) we also consider a version of our
8Formally, inflation in sector i in the absence of the monetary shock is πi =

∫
p̃ηi(p̃)dgi(p̃), where p̃ is the

desired log price change, ηi(p̃) is the adjustment hazard, and gi(p̃) is the ergodic distribution of desired price
changes across firms in the sector. The monetary shock changes the desired price changes of all firms in the
sector to p̃ + δ, where δ = p∗ − p∗ + ∆m and where p∗ is the log reset price in the first period after the
money shock and p∗ is the log reset price in the absence of the shock. The money shock changes the inflation
rate to πi =

∫
(p̃ + δ)ηi(p̃)dgi(p̃) where ηi(p̃) is the new adjustment hazard after the shock. It follows that

∆πi ≡ πi − πi = δ
∫

ηi(p̃)dgi(p̃) + δ
∫

(ηi(p̃) − ηi(p̃))dgi(p̃) +
∫

p̃(ηi(p̃) − ηi(p̃))dgi(p̃). Multiplying both
sides by the final consumption share ωC

i and summing across sectors, one obtains the decomposition for aggregate
CPI inflation in (34).
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Figure 5: Inflation and GDP responses to monetary shocks

(a) Impact inflation response (b) Impact GDP response

Notes: Panels (a) and (b) show the impact responses of, respectively, CPI inflation and aggregate GDP to monetary
shocks of different sizes in three economies: the baseline economy with fixed menu costs and networks, as well as the
otherwise identical economies without networks and with time-dependent pricing.

model with time-dependent pricing (Calvo, 1983), calibrated to match the sectoral frequencies

of adjustment in steady state. Under such a time-dependent setup, even when solved fully non-

linearly, inflation is rising more slowly as the monetary shock gets larger. The latter reflects

the contribution of both the selection effect (for smaller shocks) and the extensive margin effect

(for larger shocks) in delivering faster pricing increases in the state-dependent pricing model.

Figure 5(b) shows that in the baseline economy with networks, the aggregate consumption

response is hump-shaped in the size of monetary shocks and is maximized following a 12%

monetary expansion, delivering an increase of almost 6%. At the same time, the equivalent

economy without networks has its consumption response maximized following a 5% monetary

shock, corresponding to a smaller increase of just over 3%. The higher maximal response of

consumption under networks, as well as the fact that it occurs following a larger monetary shock,

reflect the slower response of the fraction of adjusters, once again, as documented in Figure 4.

Figure 5(b) also shows the responses in the alternative setup with time-dependent Calvo (1983)

pricing. With time-dependent pricing, one can see that even for very large shocks and a non-

linear solution, the time-dependent setup has aggregate consumption rise quasi-linearly in the

size of the monetary shock. Moreover, the non-linear time-dependent pricing results deviate

substantially from the non-linear state-dependent solutions.

Figure 6 illustrates the trade-off between GDP stimulus and inflation under monetary in-

terventions of different sizes. In particular, the figure traces out a non-linear “Phillips curve”
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Figure 6: Fully non-linear ”Phillips Curves”

Notes: the figure shows the fully non-linear ”Phillips Curves”, obtained by tracing out the impact response of CPI inflation
and the cumulative GDP response (”output gap”) following monetary shocks of different sizes; the ”Phillips Curves” are
constructed for three economies: the baseline economy with fixed menu costs and networks, as well as the otherwise identical
economies without networks and with time-dependent pricing.

in the cumulative output gap–CPI inflation space, under different model configurations. In the

network-based baseline economy, a cumulative output stimulus up to 5% or so can be achieved

with little inflationary response, reflecting a locally flat Phillips curve. However, in a counter-

factual economy without networks, the Phillips curve is steeper for small shocks and low output

gap values. This suggests a global “flattening” of the Phillips curve due to networks, and more

specifically the cascades dampening effect. Moreover, once the shocks are sufficiently large,

the Phillips curve without networks becomes backward bending, with a maximum possible cu-

mulative output stimulus of around 15%. This happens because, under very large shocks, the

fraction of adjusters increases much faster in the economy without networks, as documented in

Figure 4(a).

5.2 Disaggregated dynamics

Having analyzed the behavior of macroeconomic aggregates, we now move to studying sector-

level behavior following a large monetary shock. In Figure E.2 we report changes in sectoral

adjustment frequencies, as well as scaled impact responses of sectoral price indices, following a

monetary shock of εM
0 = 10%. A few important patterns emerge. First, all sectoral frequencies

increase, with the natural exception of the fully price-flexible sectors. The largest rise in the

fraction of adjusters is in ”Education” (+0.65), whereas the smallest (non-zero) increase is in
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Figure 7: Sectoral responses to a monetary shock vs. Customer centrality

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: Panels (a) and (b) plot fitted linear relationships between the sectoral Customer centrality and, respectively, the
responses of sectoral frequencies and the degree of size dependence in sectoral prices following a 10% monetary shock. The
vertical axes show the fitted response to Customer centrality, to which we add the fitted response to the control variables
(frequency, size of of price changes) evaluated at their sample means.

”Financial services” (+0.08). Second, removing production networks leads to a larger increase

in adjustment frequency in every sector, so that cascades dampening also holds at the sector-

by-sector level. Third, cascades dampening translates into smaller increases in sectoral price

indices in the economy with networks.

To better understand the role production networks play in shaping the frequency responses,

Figure 7(a) plots an estimated linear relationship between the sectoral frequency responses to

the 10% monetary shock and the sectoral customer centrality measure, which we introduced in

(32).9 As can be seen, ceteris paribus, a one unit increase in customer centrality is associated

with an approximately 0.05 smaller increase in the fraction of adjusters. This is because, all

else constant, cascades dampening is stronger for sectors that are more exposed to intermediate

inputs, directly or indirectly, since their desired price changes move less with the monetary

shock.

Similarly, we also investigate the association between customer centrality and the degree of

size dependence in sectoral price responses to small vs. large monetary shocks. We measure

size dependence in sectoral price indices by the difference in scaled impact responses to 10%

and 0.1% monetary shocks. In Figure 7(b) we plot an estimated linear relationship between
9Formally, we regress the change in sectoral adjustment frequency on the measure of customer centrality,

further controlling for the sectoral steady-state frequency of adjustment and the sectoral standard deviation of
price changes.
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the measure of size dependence and the sectoral customer centrality.10 As one would expect,

larger customer centrality is associated with a smaller degree of size dependence, which in turn

is driven by the smaller movement in the fraction of adjusters following the large monetary

shock.

6 Quantitative results: TFP shocks

For our second set of quantitative results, we turn to the general equilibrium dynamics fol-

lowing aggregate and sector-specific total factor productivity (TFP) shocks. First, we show

that following large aggregate TFP shocks, the economy with networks features much stronger

response of the repricing frequency, implying that the cascades amplification channel is indeed

quantitatively important. The amplification of cascades in turn generates much stronger re-

sponse of aggregate inflation for a given shock, relative to the otherwise identical economy with

time-dependent pricing. We also show that sectors with a larger customer centrality exhibit

stronger responses of the fraction of adjusters and more size dependence in sectoral price re-

sponses following large aggregate TFP shocks. Second, our results suggest that TFP shocks

to sectors with a large supplier centrality lead to more sizable movements in the aggregate

repricing frequency, and can in turn generate non-linearities in aggregate inflation.

6.1 Aggregate TFP shocks

Aggregate dynamics In Figure 8(a), we report scaled (per % shock) responses of aggregate

GDP and CPI inflation, as well as the unscaled responses of the aggregate fraction of adjusters

following two negative aggregate TFP shocks: εA
0 = −1% and εA

0 = −10%. Just as with

monetary shocks in the previous section, there is substantial size dependence: for the -1% shock

the impact scaled response of GDP is -0.6%, whereas it is -1.7% for the -10% shock. At the

same time, the scaled response of CPI inflation increases in the magnitude of the aggregate

TFP shock, implying that the aggregate price changes rise more than proportionally in the size

of the TFP innovation. Quantitatively, the -1% shock generates a scaled impact response of

CPI inflation of 0.6%, whereas the -10% corresponds to a normalized response of almost 1.7%

on impact. Key to the observed size dependence is the endogenous response of the fraction of

adjusters: for the -1% shock it remains unchanged, whereas the larger -10% shock brings the
10As before, we regress the sectoral measure of size dependence on the measure of customer centrality, further

controlling for the sectoral steady-state frequency of adjustment and the sectoral standard deviation of price
changes.
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Figure 8: Aggregate responses and network contribution under aggregate TFP
shocks

(a) Responses of aggregates to aggregate TFP shocks

(b) Network contribution to aggregates’ responses

Notes: Panel (a) shows the the responses of aggregate GDP, CPI inflation and aggregate adjustment frequency following
-1% and -10% one-time aggregate TFP shocks in the baseline economy with fixed menu costs and networks; Panel (b)
additionally shows the corresponding responses in the otherwise identical economy without networks.
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fraction of adjusters to almost 80%.

In order to understand the contribution of networks to the observed size dependence, in

Figure 8(b) we additionally document the responses to the same aggregate TFP shocks in

an otherwise identical economy without networks. For the -1% shock, networks amplify the

response of aggregate GDP by a factor of two, while the scaled response of CPI inflation is

nearly 0.3% without networks versus 0.6% under networks. Importantly, for the larger shock

of -10%, the network amplification of both aggregate GDP and CPI inflation is greater than

under the small -1% shock. When it comes to the response of inflation, this is the opposite of

our findings under monetary shocks, where the amplification of inflation response weakens for

larger innovations. To understand the difference, it is instructive to look at the response of the

adjustment frequency. One can see that for the -10% shock, the fraction of adjusters increases

substantially more in the economy with networks. This is the exact opposite of what happens

under monetary shocks, where networks dampen the response of the adjustment frequency.

Instead, under TFP shocks networks make the response of the adjustment frequency stronger,

representing cascades amplification.

In Figure 9(a), we further investigate the interaction between the aggregate repricing fre-

quency and the size of the aggregate TFP shock. Once again, contrary to the findings under

monetary shocks, networks consistently and substantially amplify the response of the aggregate

fraction of adjusters to aggregate TFP innovations. For example, following a -10% aggregate

TFP shock, the economy with networks features a rise in the fraction of adjusters to 75%, while

without networks the aggregate adjustment frequency rises to just below 40%. In this sense, the

cascades amplification effect is quantitatively sizable. In order to understand the contribution

of cascades amplification to aggregate CPI movements, we once again rely on the decomposi-

tion in (34). Figure 9(b) decomposes the difference in impact responses of aggregate CPI in

economies with and without networks for different shock sizes. It follows that for aggregate

TFP shocks below 3% in absolute value, the difference between the network and no-network

cases is explained mainly by the selection effect, whereas for larger shocks the extensive margin

effect is dominant. Therefore, for large aggregate TFP shocks the cascades amplification mech-

anism, working through the extensive margin of price changes, is the main channel through

which networks amplify the aggregate CPI response.

The cascades amplification channels is important for generating non-linearity in aggregate

CPI inflation response. In Figure 10 (a), we plot the impact response of aggregate CPI inflation

to aggregate TFP shocks of different signs and sizes. The inflation response rises much faster
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Figure 9: Extensive margin response to aggregate TFP shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following aggregate TFP shocks of
different sizes in the baseline economy with fixed menu costs and networks, as well as in the otherwise identical economy
without networks; Panel (b) uses the decomposition in (34) to show the proportional contributions of the Calvo, Extensive
and Selection components to the effect of networks on the impact response of CPI inflation to aggregate TFP shocks of
different sizes.

in the economy with networks relative to the no-network benchmark, being almost three and

a half times higher after a -10% shock. We also report the inflation responses in an economy

with networks, but with time-dependent (Calvo, 1983) pricing, matching the same sectoral

frequencies of adjustment in steady state. One can see that the economy with time-dependent

pricing predicts much smaller inflation responses. In this sense, the otherwise identical economy

with Calvo (1983) pricing requires substantially larger TFP shocks in order to generate the same

amount of aggregate inflation.

Disaggregated dynamics We now turn to analyzing the responses of individual sectors to

an aggregate TFP shock. In particular, Figure E.3 reports the impact responses of sector-

specific fractions of adjusters and scaled sectoral price indices to a large aggregate TFP shock

(εA
0 = −10%). Some key results are of note. First, with the natural exception of the two fully

flexible sectors, frequency of adjustment rises in all the sectors. The largest rise is in ”Pub-

lishing” (+0.95), whereas the smallest positive change is in ”Legal, accounting, management”

(+0.18). Second, the cascades amplification effect holds sector-by-sector: in an otherwise iden-

tical economy without networks, frequency increases by less in every sector. Third, the cascades

amplification leads to larger sectoral price increases in every sector.

In order to pin down the role played by network characteristics in shaping sectoral frequency

responses, Figure 11(a) plots an estimated linear relationship between the change in the frac-
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Figure 10: Inflation and GDP responses to aggregate TFP shocks

(a) Impact inflation response (b) Impact GDP response

Notes: Panels (a) and (b) show the impact responses of, respectively, CPI inflation and aggregate GDP to aggregate
TFP shocks of different sizes in three economies: the baseline economy with fixed menu costs and networks, as well as the
otherwise identical economies without networks and with time-dependent pricing.

tion of adjusters in a given sector and its customer centrality, introduced in (32). There is a

clear positive relationship, with a unit increase in customer centrality being associated to 0.11

larger increase in the fraction of adjusters, ceteris paribus. This is the cascades amplification

mechanism in action: higher customer centrality means the sector has a larger total exposure to

intermediate inputs; as a result, an aggregate TFP shock leads to a larger desired price change,

making the adjustment decision more likely.

The established relationship between frequency responses and customer centrality also has

an implication for the degree of size dependence in sectoral price dynamics. To see that, in

Figure 11(b) we plot the estimated linear relationship between a measure of sectoral price size

dependence, given by the difference between normalized responses to -10% and -0.1% aggregate

TFP shocks, and the sectoral customer centrality. The estimated relationship is positive, im-

plying that a higher total exposure to intermediate inputs is associated with a greater degree

of size dependence in the sectoral price response to a large aggregate TFP shock.

6.2 Sectoral TFP shocks

For our next set of results, we study the transmission of sector-specific TFP shocks. Our

particular interest is in how very large shocks originating in specific parts of the economy can

affect macroeconomic aggregates. To do that, we subject each production sector of our economy

to a large negative TFP shock (εA
i,0 = −20%, ∀i), and study how each individual shock affects
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Figure 11: Sectoral responses to an aggregate TFP shock vs Customer centrality

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: Panels (a) and (b) plot fitted linear relationships between the sectoral Customer centrality and, respectively, the
responses of sectoral frequencies and the degree of size dependence in sectoral prices following a -10% aggregate TFP
shock. The vertical axes show the fitted response to Customer centrality, to which we add the fitted response to the
control variables (frequency, size of of price changes) evaluated at their sample means.

aggregates.

In Figure 12(a), we show the responses of the aggregate fraction of adjusting firms to the

large sector-specific TFP shocks. First, for the majority of sectors, the effect of their own shock

on aggregate frequency is relatively modest. However, there are notable exceptions: individual

shocks to ”Food and beverages”, ”Crop and animal production”, as well as ”Chemicals and

chemical products” generate an aggregate frequency increase of over 4%. Second, for all sectors,

networks amplify the aggregate frequency response, to the sector-specific TFP shock. Moreover,

the amplification is particularly strong for the three aforementioned sectors that are particularly

important for aggregate frequency. In this sense, the disproportionate effect of certain sectors on

the aggregate fraction of adjusting firms is potentially driven by their position in the networks.

We also study the response of aggregate CPI inflation to sectoral TFP shocks. Specifically, in

Figure 12(b) we depict scaled impact responses of aggregate CPI inflation to the large negative

sectoral TFP shocks. First, networks amplify the aggregate CPI inflation responses for all

sectoral TFP shocks. Second, just as with aggregate frequencies, for the majority sectors, the

network amplification is relatively modest. Third, some sectors pose an exception: shocks

to ”Food and Beverages”, ”Crop and animal production”, ”Mining and Quarrying”, as well

as “Chemicals and Chemical Products” have an effect on aggregate CPI that is amplified be

networks to a large degree than for other sectors.
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Figure 12: Aggregate responses to sectoral TFP shocks

Notes: the top Panel shows the impact responses of aggregate adjustment frequency to a -20% TFP shocks to a specific
production sector of our economy; the bottom Panel similarly shows the impact responses of CPI inflation to a -20%
sectoral TFP shock.

An important pattern emerges: large shocks to certain sectors have the capacity to dispro-

portionally affect the aggregate adjustment frequency. Moreover, this disproportionate impor-

tance stems from network amplification. In order to shed light on how network characteristics

may affect the systemic importance of a sector for aggregate frequency, in Figure 13(a) we plot

an estimated linear relationship between the aggregate frequency change (net of movements

in the own sectoral frequency) and the sectoral supplier centrality, introduced in (33). The

relationship is clearly positive: a unit increase in supplier centrality is associated with a 0.3%

additional increase in aggregate frequency. Once again, this is a manifestation of the cascades

amplification mechanism: higher supplier centrality implies that the sector is, directly or indi-

rectly, a more important provider of intermediate inputs to the rest of the economy; as a result,

a shock to that sector strongly affects marginal costs, and hence desired price changes, of firms

in other sectors, making the latter more likely to adjust prices.

38



Figure 13: Sectoral TFP shocks, aggregate responses and Supplier centrality

(a) (Net) aggregate frequency response (b) Core inflation response

Notes: Panel (a) shows the fitted linear relationship between the sectoral Supplier centrality and the response of net
aggregate adjustment frequency (excluding the shocked sector) to a -20% TFP shock to that sector; Panel (b) shows effect
of TFP shocks to ”Mining and quarrying” and ”Crop and animal production” sectors on core inflation (excludes the two
shocks commodity sectors).

The cascades amplification channel also has important implications for the non-linearity of

aggregate inflation in response to sector-specific shocks of different sizes. In order to see that, in

Figure 13(b) we consider how progressively larger shocks to the two commodity sectors, ”Min-

ing and quarrying” and ”Crop and animal production”, affect aggregate core inflation, which

excludes movements in the commodity prices themselves. First, one can see that as the nega-

tive TFP shocks to the ”Crop and animal production” sector become larger in magnitude, core

inflation responds more than proportionally on impact, thus rising in a fast non-linear fashion.

This is because, as documented in Figure 13(a), shocks to ”Crop and animal production” create

large increases in the (net) aggregate adjustment frequency. Second, much less non-linearity

in impact core inflation response occurs under shocks to ”Mining and quarrying”. This is be-

cause shocks to the latter sector do not induce substantial movements in aggregate adjustment

frequency, which is ultimately driven by the close-to-average value of supplier centrality.

7 Extensions and robustness checks

In this section present three extensions to our baseline model. First, we consider a version

of our economy in the cashless limit, where the central bank conducts monetary policy by

setting the nominal interest rate, which endogenously responds to aggregate inflation and output

according to a Taylor rule. Second, we relax the assumption of fixed menu costs, and consider
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a version of our economy with random menu costs instead. Third, we extend our baseline

model with a constant elasticity of substitution (CES) aggregation across sectors, which allows

for the consumption and input-output shares to vary endogenously along the intensive margin,

capturing potentially low substitutability across inputs.

7.1 Endogenous monetary policy

In our baseline results, the central bank conducts policy by setting an exogenous path of money

supply. We now consider an extension that adds realism to the monetary policy conduct.

In particular, we use the cashless limit setup of Woodford (2004) and Gaĺı (2015), where the

central bank conducts policy by setting the level of the nominal interest rate, which also responds

endogenously to movements in macroeconomic aggregates. In particular, we assume that the

nominal interest rate follows the following Taylor-type rule, capturing the empirically-realistic

policy persistence (Coibion and Gorodnichenko, 2012):

ι̂t = ρiι̂t−1 + (1 − ρi)
[
ϕππ

C
t + ϕcct

]
+ εi

t, (35)

where ι̂t ≡ log 1+it

Π/β
is the log-deviation of the nominal interest rate from its steady-state value,

πC
t ≡ log ΠC

t /Π is deviation of CPI inflation from target and ct ≡ logCt/C is aggregate GDP in

deviation from steady state. In the rule, ρi ∈ [0, 1) determines the degree of policy persistence,

ϕπ > 0 and ϕc > 0 pin down how aggressively the central bank responds to deviations of inflation

and GDP from their steady-state values, and εi
t is the mean-zero i.i.d. monetary policy shock.

For our monthly calibration, we set ρi = 0.9, ϕπ = 1.5 and ϕc = 0.5/12.

In Appendix D we detail the full alternative version of our model in the cashless limit

with the Taylor-type rule for the nominal interest rate. Here we present an overview of the key

results. In Figure D.1 we report impulse responses of the aggregate adjustment frequency, GDP,

inflation and the nominal interest rate to an annualized one-time monetary policy shock of -500

basis points. It follows that in the baseline economy with networks, the aggregate frequency

rises up to 0.13, as opposed to only 0.11 without networks. Therefore, cascades dampening

carries through even under endogenous monetary policy. Moreover, one can also see that the

cumulative GDP response is larger in the economy with networks, so that cascades dampening

contributes towards additional monetary non-neutrality.

As for supply shocks, in Figure D.2 we report the responses of aggregates to a one-time

transitory (ρ = 0) aggregate TFP shock of -5%. Find find that the response of frequency
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is stronger in the economy with networks, so that cascades amplification also holds under

endogenous monetary policy. One can also see that the response of aggregate CPI inflation is

larger under networks, marking the contribution of cascades amplification.

7.2 Random menu costs

In our baseline results, we work under the assumption that nominal price re-setting is subject

to a fixed sector-specific menu cost as in Golosov and Lucas (2007). In order to illustrate that

our novel channel of interaction between networks and pricing cascades is not limited to the

fixed menu cost setup, as an extension, we consider a random menu cost setup instead.11 More

specifically, we use the CalvoPlus setup of Nakamura and Steinsson (2010), which assumes that

each period a randomly selected fraction of firms within each sector draws a menu cost of zero,

whereas the complementary fraction is still subject to the fixed menu cost.

Formally, the CalvoPlus setup corresponds to the following functional form of the probability

of adjustment function ηi.t(.):

Assumption 4′ (CalvoPlus pricing). Consider a firm in sector i with the quality adjusted log

relative price p at time t. Then the probability that this firm adjusts its nominal price is given

by:

ηi,t(p) = ℓi + (1 − ℓi) × 1(Li,t(p) > 0) (36)

where ℓi is the sectoral probability of drawing a zero menu cost, 1(·) is the indicator function,

and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi (37)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Crucially, as the non-zero menu cost tends to infinity (κi → ∞), the pricing problem collapses

to the time-dependent model of Calvo (1983), as only the randomly selected fraction ℓi in each

sector gets to adjust. At the same time, setting the probability of drawing a zero menu cost

to zero (ℓi = 0) collapses the pricing problem in that sector to the fixed menu cost setup of

Golosov and Lucas (2007).

In order to quantitatively discipline the probabilities of free adjustment, we estimate them

so that, in steady state around 75% of all price adjustments are free in each sector, following
11We study the random menu cost setup in the context of the cash economy. However, we can also feasibly

study random menu costs in the chasless limit.
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Nakamura and Steinsson (2010) and Blanco et al. (2024b). As before, the non-zero menu costs

and standard deviation of idiosyncratic shocks are estimated to jointly match the sector-specific

frequencies and standard deviations of price changes in the Euro Area.

In Figure E.4 we study the responses of aggregate repricing frequency and GDP to monetary

shocks of different sizes under CalvoPlus pricing. In panel (a) one can see that the response

of aggregate repricing frequency, both with and without networks, is dampened relative to

otherwise identical economies with fixed menu costs. This is because the presence of free

adjustment opportunities implies that much larger shocks are needed for firms to get pushed

out of their inaction region. At the same time, just like in the economy with fixed menu costs, the

economy with networks features smaller frequency movements, which is the effect of dampening

pricing cascades. As for the GDP responses in panel (b), the economy with networks and

random menu costs features much stronger non-neutrality than an otherwise identical economy

without networks.

As for the propagation of supply shocks, in Figure E.5 we report the responses of aggregate

repricing frequency and CPI inflation to aggregate TFP shocks of different sizes. Panel (a)

show that, as with monetary shocks, the introduction of random menu costs dampens the

responses of frequency to aggregate TFP shocks, both with and without networks. At the same

time, one can see that conditional on CalvoPlus pricing, the economy with networks features

stronger movements in aggregate frequency, implying that networks amplify cascades, just as

in the economy with fixed menu costs. The amplification of pricing cascades creates a strong

nonlinearity in aggregate CPI dynamics, as can be seen in panel (b). For a -10% aggregate TFP

shock, networks amplify the aggregate CPI response from 0.03 to 0.08 on impact.

7.3 Alternative elasticity of substitution across sectors

In our baseline analysis, we use Cobb-Douglas aggregation across sectors, as well as a Cobb-

Douglas production technology. In this subsection we relax this assumption, and consider more

general constant elasticity of substitution (CES) aggregation across sectoral consumptions, as

well as across productive inputs.

First, we consider the following CES final consumption aggregator:

Assumption 2′ (CES consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) =
(

N∑
i=1

ωC
i

1
θcC

θc−1
θc

i,t

) θc
θc−1

, (38)
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where θc > 0 is the elasticity of substitution across sectoral varieties and
∑

i ω
C
i = 1, ωC

i ≥ 0,∀i.

Under this assumption, the equilibrium final consumption shares are given by:

ωC
i,t = ωC

i ×
P̃ 1−θc

i,t∑N
k=1 ω

C
k P̃

1−θc
k,t

(39)

which is constant in the special case when the sectoral consumption aggregator is Cobb-Douglas

(θc = 1). It follows that the final consumption shares are time-varying and depend on relative

movements in (real) sectoral price indices. Whenever final sectoral varieties are complements,

θc ∈ (0, 1), a relative increase in a sectoral price index leads to a rise in that sector’s final

consumption share, and vice versa whenever the varieties are substitutes, θc > 1.

Similarly, we also assume the following CES production technology:

Assumption 3′ (CES production technology). The production technology Fi(·) for a firm j in

sector i is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = 1
ζi,t(j)

×Ai,t ×
(
α

1
θi
i N

θi−1
θi

i,t (j) +
N∑

k=1
ω

1
θi
ikX

θi−1
θi

i,k,t (j)
) θi

θi−1

, (40)

where θi > 0 is the elasticity of substitution across inputs and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Such a production technology delivers the following equilibrium cost shares of labor and

intermediate inputs:

αi,t = αi × 1
αi +

∑N
k′=1 ωik′P̃ 1−θi

k′,t

, ωik,t = ωik ×
P̃ 1−θi

k,t

αi +
∑N

k′=1 ωik′P̃ 1−θi
k′,t

(41)

which are constant in the special case when the production function is Cobb-Douglas (θi = 1).

As with consumption aggregation, time variation in the input cost shares is pinned down by

relative movements in (real) input prices. As before, whenever inputs are complements, a

relative increase in the price of an input leads to an increase in the cost share of that input,

and vice versa whenever inputs are substitutes.

We now revisit our key quantitative exercises in an economy with fixed menu costs and CES

aggregation. We calibrate θc = θi = 0.001,∀i, to consider an economy where goods are almost

perfect complements, capturing the potential difficulty of substituting both consumption and

production varieties. This may represent the supply chain disruptions that we observed during

and after the Covid pandemic across the globe.
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In Figure E.6, we study the propagation of monetary shocks in our economy with CES aggre-

gation. First, once can see that, just like under Cobb-Douglas, networks dampen the response

of frequency to monetary shocks. In other words, our key mechanism of interaction of networks

and the extensive margin continues to hold under CES aggregation. Quantitatively, conditional

on the presence of networks, moving from Cobb-Douglas to CES with θc = θi = 0.001, ∀i delivers

slightly larger frequency movements for expansions and slightly smaller frequency movements

under monetary contractions. This is because under complements, sectors with rising prices see

their input and consumption shares rise, thus creating a pro-inflation asymmetry.

As for supply disturbances, in Figure E.7 we study the propagation of aggregate TFP shocks.

Just as in the economy with Cobb-Douglas, networks amplify the response of aggregate repricing

frequency to aggregate TFP shocks. Therefore, our key mechanism that networks amplify

pricing cascades continues to hold under CES aggregation. Also, as with monetary shocks,

the fact that sectoral varieties are complements creates a pro-inflation asymmetry: conditional

on networks, CES aggregation amplify frequency movements after negative TFP shocks, and

dampens frequency movements following positive TFP shocks.

8 Application: (post-)COVID inflation in the Euro Area

We now assess whether the novel interaction between networks and pricing cascades is important

for quantitatively explaining macroeconomic dynamics in the Euro Area in the (post-)Covid era.

To do that, we feed four structurally interpretable shock series into our model, corresponding to

the widely perceived major drivers of business cycles: money supply, energy price movements,

food price movements and the labor market conditions. We show that when subjected to those

four series, our model successfully captures the rise in the aggregate repricing frequency and

the surge in consumer price inflation in the Euro Area. At the same time, removing either

state-dependent pricing or networks dramatically worsens the quantitative performance of the

model. This stresses the quantitative relevance of our novel interaction between networks and

pricing cascades.

8.1 Four exogenous shock series

In our exercise, we consider four exogenous monthly shock series, spanning the period between

January 2019 and June 2024.

First, we feed in the Euro Area nominal GDP in order to approximate the aggregate money
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supply series {Mt}2024:6
2019:1. We treat this series as an amalgamation of monetary and fiscal stance

in the (post-)Covid era, capturing the overall aggregate demand conditions.12 Second, we

are fitting an exogenous TFP process in the labor union sector {ALU
t }2024:6

2019:1 to make sure the

nominal cost of labor faced by firms exactly matches the observed Euro Area nominal hourly

earnings series in equilibrium. Equivalently, this amounts to fitting an exogenous process for

the aggregate labor wedge. We believe this is important, since the labor market in our model

is much too parsimonious to reconcile the observed wage dynamics, which is in turn crucial for

price setting.13

Third and fourth, we fit exogenous TFP processes in the ”Mining and Quarrying” and ”Crop

and Animal Production” sectors, {AENERGY
t }2024:6

2019:1 and {AFOOD
t }2024:6

2019:1, in order to exactly match

the real IMF Energy Price Index and the IMF Food Price Index as the respective sectoral price

indices in equilibrium.14 In this way, we subject the model to empirically-realistic commodity

price shocks, which represent a supply-side influence on aggregate inflation. Since the global

commodity prices are largely orthogonal to the Euro Area economic conditions, we believe it is

plausible to assume those are driven purely by exogenous sector-specific shocks.

8.2 Explaining the surge in frequency and inflation

Figure 14(a) shows the actual observed changes in aggregate adjustment frequency and aggre-

gate inflation in the Euro Area, as well as the variation generated by four shocks in our baseline

non-linear model with menu costs and production networks. In panel (a), one can see that

the baseline model successfully reproduces almost the entire surge in the aggregate adjustment

frequency, as observed in the Euro Area microdata. In addition, the baseline model can also

generate the magnitude of the empirically-observed increase in aggregate CPI inflation.

In order to discern the relative contribution of supply shocks, in Figure 14(b) we compare the

actual Euro Area data with the model-implied variation generated exclusively by the aggregate

demand and the aggregate labor wedge shocks. It follows that the model produces essentially

no surge in the the adjustment frequency, whereas the peak inflation response is just below
12We use the observed nominal GDP, as opposed to money supply, since the latter series is heavily affected by

time variation in velocity of money, which our model assumes to be constant, in line with most of the theoretical
literature.

13A more realistic labor market setup would feature search-and-matching frictions with, for example, a bar-
gaining process for the wage.

14The IMF Energy and Food Price Indices track the respective price movements in US dollars. In order to
match them to the real sectoral price indices in the Euro Area, we apply two transformations to the IMF Indices.
First, we adjust them by movements in the US dollar/Euro nominal exchange rate. Second, we deflate the
exchange rate adjusted series by Euro Area nominal GDP in order to get model-consistent real price indices for
the Euro Area.
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Figure 14: Explaining the observed surge in frequency and inflation (Euro Area)

(a) Baseline model: all shocks

(b) Baseline model: no commodity shocks

(c) Alternative models: all shocks

Notes: the figure shows the model-implied changes in aggregate frequency of adjustment and CPI inflation versus the
actual observed values in the Euro Area. Panel (a) considers the baseline model with fixed menu costs and networks,
subjected to all four shocks; Panel (b) considers the baseline model, which is subjected to the aggregate demand and labor
wedge shocks, but not the energy and food price shocks; Panel (c) considers the models with fixed menu costs and no
networks, as well as the model with networks and time-dependent pricing, subjected to all four shocks.

5%, as opposed to almost 11% in the data. Since it is the supply-side commodity shocks that

generate pricing cascades that get amplified by networks, one can see that the novel mechanism

specific to our model is quantitatively important for matching the observed pricing dynamics.

To highlight that our novel mechanism requires an interaction of large shocks, networks and

state-dependent pricing, in Figure 14(c) we consider alternative modeling setups, which omit

our model ingredients one-by-one. In particular, an otherwise identical model without networks,

when subjected to the same four shock series, produces no major surge in adjustment frequency

and less than half of observed inflation at the peak. At the same time, a model with networks

and time-dependent Calvo (1983) pricing generates zero variation in frequency by construction,
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while generating only 7% inflation at the peak.

9 Conclusions

Recent business cycle episodes have shed light on novel aspects of macro fluctuations, such as

inflationary swings driven by large sectoral shocks, as well as the crucial role of the extensive

margin of price adjustment. Rationalizing such evidence requires broadening our modeling

toolkit, which we do by developing a novel theoretical framework featuring an economy with

production networks, state-dependent pricing and large shocks. The interaction of our three

ingredients creates a novel theoretical channel, namely pricing cascades: large movements in

aggregates triggering price adjustment decisions at the extensive margin. Beyond its concep-

tual novelty, we show that the interaction of networks with pricing cascades is quantitatively

important for rationalizing the Euro Area inflationary experience in the (post-)Covid era.

Key to our novel theoretical mechanism is the differential interaction of networks and pricing

cascades, depending on the type of shock driving the business cycle. In particular, under

demand shocks, such as central bank interventions, networks dampen cascades, slowing down the

movements of aggregate adjustment frequency and inflation, as well as strengthening monetary

non-neutrality. On the other hand, networks amplify cascades following aggregate or sector-

specific supply shocks, leading to strong inflationary spiral led by rising fraction of adjusting

firms. Quantitatively, we find the network amplification of cascades set off by large movements

in energy and food prices to be a crucial contributor towards the surges of Euro Area inflation

and adjustment frequency between 2020 and 2024.

We believe that our novel framework creates ample opportunities for future research. First,

while our current work is purely positive in character, a natural next step is to move towards a

normative analysis of business cycles with pricing cascades, including solving for optimal mon-

etary and fiscal policies. Second, while our framework features a rich supply-side structure,

it remains quite parsimonious when it comes to the side of households. Extending the model

to feature realistic heterogeneity on the demand side, especially when it comes to marginal

propensities to consume and the sectoral composition of purchases, would allow to study the

propagation of a broader class of shocks and interventions. In particular, the inflationary con-

sequences of fiscal stimulus through checks and transfers, is one question of utmost importance

that could be analyzed.
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A Proofs

Proof of Lemma 1. We want to find a second-order approximation of the firm-level profit
function D̃i,t(j) in the log quality-adjusted real price of that firm log P̃i,t(j) near the optimum
log P̃ ∗

i,t. By definition of the optimal reset price, ∂D̃i,t(j)
∂ log P̃i,t(j) |P̃i,t(j)=P̃ ∗

i,t
= 0. As for the second

derivative, one can show that:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 =

[
(1 − τi,t)e(1−ϵ) log P̃i,t(j)(1 − ϵ)2 − ϵ2Q̃i,te

−ϵ log P̃i,t(j)
]

× P̃ ϵ
i,tYi,t. (A.1)

Evaluating the second derivative at log P̃ ∗
i,t, and after some algebra one obtains:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗

i,t(j) = −(ϵ − 1)(1 − τi,t)
[
P̃i,t/P ∗

i,t

]ϵ−1
λi,t. (A.2)

Therefore, one can write the second-order approximation as:

D̃i,t = D̃∗
i,t + 1

2
∂2D̃i,t(j)

∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗
i,t(j) × [p̃i,t(j)]2 + O[p̃i,t(j)3], (A.3)

where p̃i,t(j) ≡ [log P̃i,t(j) − log P̃ ∗
i,t] is the firm-level price gap. Inserting the expression for the

second derivative, one obtains:

D̃∗
i,t − D̃i,t = 1

2(ϵ − 1)(1 − τi,t)
[
P̃i,t/P̃ ∗

i,t

]ϵ−1
λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)3]. (A.4)

Proof of Lemma 2. Focusing on period t = 0, a firm adjusts its price if the profit gain from
adjustment exceeds the menu cost:

D̃i,0(j)∗ − D̃i,0(j) ≥ κi,0 (A.5)

Using the approximation for the profit gain in Lemma 1, as well as the menu cost form in
Assumption 6, one can further rewrite the adjustment condition as:

1
2(ϵ − 1)(1 − τi,0)

[
P̃i,0/P̃ ∗

i,0

]ϵ−1
λi,0 × [p̃i,0(j)]2 ≥ κi(1 − τi,0)[P̃i,0/P̃ ∗

i,0]ϵ−1λi,0, (A.6)

=⇒ [p̃i,0(j)]2 ≥ 2κi

ϵ − 1 . (A.7)
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Using the expression for the price gap in (28), as well as the normalization pi,−1(j) = log ϵ
ϵ−1

1
1−τ i

,
the adjustment condition becomes:

∣∣∣∣∣−σiεi,0(j) − m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0

∣∣∣∣∣ ≥
√

2κi

ϵ − 1 . (A.8)

Therefore, the inaction region is given by:

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ − 1 , (A.9)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 −γi, ai,0 ≡ log Ai,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

Proof of Proposition 1. Before providing a proof for Proposition 1, it is useful to formally
establish an auxiliary technical result:

Lemma A1. Define f+(x; c) ≡ Φ(c + x) − Φ(−c + x) and f−(x; c) ≡ Φ(c − x) − Φ(−c − x),
where c > 0 is a parameter and Φ(.) is standard normal CDF. Then both f+(x; c) and f−(x; c)
are decreasing in x for all x > 0.

Proof. First, consider f+(x; c). Notice that f
′

+(x) = Φ′(c+x)−Φ′(−c+x) = ϕ(c+x)−ϕ(−c+x),
where ϕ(.) is standard normal PDF. Hence, f

′

+(0) = ϕ(c) − ϕ(−c) = 0. As for any x ∈ (0, c],
one can deduce that f

′

+(x) = ϕ(c + x)︸ ︷︷ ︸
<ϕ(c)

− ϕ(−c + x)︸ ︷︷ ︸
>ϕ(−c)

< 0. Further, for any x > c it follows that

f
′

+(x) = ϕ(c + x) − ϕ(−c + x) < 0, since standard normal PDF is decreasing in positive inputs.
All in all, we conclude that f

′

+(x) < 0 for all x > 0.
Similarly, f

′

−(x) = −Φ′(c − x) + Φ′(−c − x) = −ϕ(c − x) + ϕ(−c − x). As before, f
′

−(0) =
−ϕ(c) + ϕ(−c) = 0. For any x ∈ (0, c], f

′

−(x) = − ϕ(c − x)︸ ︷︷ ︸
>ϕ(c)

+ ϕ(−c − x)︸ ︷︷ ︸
<ϕ(−c)

< 0. As for any x > c,

f
′

−(x) = −ϕ(c − x) + ϕ(−c − x) < 0, since standard normal PDF is increasing in negative inputs.
In total, we conclude that f

′

−(x) < 0 for all x > 0.

Armed with the additional result in Lemma A1, we are now ready to prove Proposition 1.
Consider a monetary expansion m0 > 0. The probability that a firm draws an idiosyncratic
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innovation that lies in the inaction region following the monetary expansion is given by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

= f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.10)

where f−(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary expansion
to sectoral prices is incomplete, log P̃k,0 < 0, ∀k, it follows that m0 +

∑N
k=1 ωik log P k,0 < m0.

Moreover, since f−(.) is falling in its positive inputs, it immediately follows that:

f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f−

(
1
σi

m0; 1
σi

√
2κi

ϵ − 1

)
. (A.11)

Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a
monetary expansion is higher in the economy with networks.

Similarly, consider a monetary contraction m0 < 0. The probability that a firm draws an
idiosyncratic innovation that lies in the inaction region following the monetary contraction is
given by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

= f+

(
1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.12)

where f+(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary contraction
to sectoral prices is incomplete, log P̃k,0 > 0, ∀k, it follows that −m0 −

∑N
k=1 ωik log P k,0 < −m0.

Moreover, since f+(.) is falling in its positive inputs, it immediately follows that:

f+

(
− 1

σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f+

(
− 1

σi
m0; 1

σi

√
2κi

ϵ − 1

)
. (A.13)

Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a
monetary contraction is higher in the economy with networks.
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Proof of Proposition 2. Consider a productivity deterioration ai,0 < 0 and/or a rise in desired
markups γi,0 > 0 in sector i. The probability that a firm in sector i′ (which may or may not
be the same as i) draws an idiosyncratic innovation that lies in the inaction region following
productivity deterioration/markup increase in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

= f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,
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where f−(.) is defined in Lemma A1. Now, as long as the productivity deterioration/markup
increase in sector i leads to a rise in sectoral prices of all other sectors, log P̃k,0 > 0, ∀k, it follows
that −ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 > −ai′,0 + γi′,0, ∀i′. Moreover, since f−(.) is falling in its

positive inputs, it immediately follows that:

f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f−

(
1

σi′
{−ai′,0 + γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.15)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Similarly, consider a productivity improvement ai,0 > 0 and/or a fall in desired markups
γi,0 < 0 in sector i. The probability that a firm in sector i′ (which may or may not be the same
as i) draws an idiosyncratic innovation that lies in the inaction region following productivity
improvement/markup decrease in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

= f+

(
1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,

(A.16)

where f+(.) is defined in Lemma A1. Now, as long as the productivity improvement/markup
decrease in sector i leads to a fall in sectoral prices of all other sectors, log P̃k,0 < 0, ∀k, it follows
that −ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 < −ai′,0 + γi′,0, ∀i′. Moreover, since f+(.) is falling in its
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positive inputs, it immediately follows that:

f+

(
− 1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f+

(
− 1

σi′
{ai′,0 − γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.17)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Note that while we provide a proof for sector-specific productivity/markup shocks, results
are equivalent for aggregate productivity/markup shocks. This is the case since an aggregate
productivity shock a is merely a combination of equally-sized sector-specific productivity shocks
ai = a, ∀i, and similarly for an aggregate markup shocks.
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B Additional calibration details (Euro Area)

Table B.1: Final Consumption Shares, Supplier and Customer Centrality

Sector Name Consumption Supplier Customer
Share Centrality Centrality

Crop and animal production 0.0290 2.1266 3.4452
Fishing and aquaculture 0.0039 0.1070 3.2103
Mining and quarrying 0.0051 2.5263 3.1919
Food and beverages 0.1430 3.2264 3.9448
Textiles, clothes, leather 0.0403 1.4829 3.6296
Wood and wooden products 0.0044 1.3072 3.6121
Paper and paper products 0.0079 2.6301 3.9664
Printing and recorded media 0.0035 1.0667 3.3331
Coke and petroleum products 0.0398 3.0308 4.3485
Chemicals and chemical products 0.0162 6.1838 4.2462
Pharmaceuticals 0.0140 0.7374 3.4977
Rubber and plastic 0.0088 2.0056 3.7245
Non metallic minerals 0.0066 0.9865 3.3615
Metal products 0.0081 3.2480 3.1201
Computer and electronics 0.0175 1.9379 3.2884
Electrical equipment 0.0115 1.4046 3.3162
Machinery 0.0066 2.1823 3.3086
Motor vehicles 0.0514 1.5453 3.8439
Other transport 0.0057 0.8266 3.6416
Furniture 0.0224 0.6181 3.1077
Repair of machinery 0.0030 1.1591 2.9322
Land and pipeline transport 0.0398 3.6878 2.9952
Warehousing 0.0125 3.9047 3.1653
Accommodation and food services 0.1475 1.0026 2.9424
Publishing 0.0138 0.7571 2.9781
Movies, video, TV 0.0131 1.2814 2.9446
Computer and information services 0.0069 2.5026 2.4193
Financial services 0.0391 4.4781 2.6784
Insurance and pension 0.0502 1.4619 3.2978
Legal, accounting, management 0.0079 6.5099 2.2538
Architectural/engineering services 0.0037 2.0129 2.3319
Science and R&D 0.0020 0.2637 2.4415
Advertising and marketing 0.0020 1.1808 2.8706
Other professional activities 0.0069 0.9650 2.3978
Administration and support 0.0293 7.5903 2.4434
Education 0.0261 0.5206 1.5508
Healthcare 0.0743 0.2930 2.0342
Other personal services 0.0765 1.3971 2.3334
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Figure B.2: Distributions of Supplier and Customer centrality (Euro Area, 38 sec-
tors)

(a) Supplier centrality (b) Customer centrality

Notes: Panels (a) and (b) show the distributions of Supplier and Customer centrality across the 38 production sectors in
the Euro Area.
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Figure B.3: Matching pricing moments for each sector

Notes: the figure shows the sector-specific frequencies and sizes of price adjustment, as well as the corresponding model-
based steady-state values under our estimated values of sectoral menu costs and standard deviations of idiosyncratic
quality innovations.
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C Details of the numerical algorithm

C.1 Steady state computation on a grid

For each sector, we solve the stationary Bellman equation and price distribution on an evenly

spaced grid of log prices Γ with step size ∆p, pj ∈
[
p, p+ ∆p, ..., p

]
, j = 1, .., J grid points, so

that Vj = V (pj). The expectation E [V (p− σεt+1 − π)|p = pj ] is calculated as T V where we

define transition matrix

T =



T1,1 T1,2 · · · T1,J

T2,1 T2,2 · · · T2,J

...
... . . . ...

TJ,1 TJ,2 · · · TJ,J


.

with elements

Tj,k =
∫ pk+1/2

p=pk−1/2

ψ

(
p− (pj − π)

σ

)
dp = Ψ

(
pk+1/2 − (pj−π)

σ

)
− Ψ

(
pk−1/2 − (pj − π)

σ

)
,

and where pk−1/2 ≡ (pk−1 + pk)/2, pk+1/2 ≡ (pk + pk+1)/2, ψ(·) is the standard normal proba-

bility density function, and Ψ(·) is the standard normal cumulative distribution function.

We also define the vectors

ϕ =



ϕ1

ϕ2
...

ϕJ


, η =



η1

η2
...

ηJ


, V =



V1

V2
...

VJ


, D =



D1

D2
...

DJ


The Bellman equation in matrix notation is then given by

V = D + β
[
T ((1 − η) · V ) + T

(
η ·
(
ϕ′V − κw

))]
where · denotes element-by-element multiplication. Vector ϕ distributes unit probability mass

to grid points adjacent to p∗ according to the logit formula

ϕ = exp(V /χ)∑
Γ exp (V /χ)

with χ = 0.0005. Note that ϕ′V performs smooth maximization as in eq.(21).
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To solve the problem for N sectors with input-output linkages, we use the following algo-

rithm. Start with a guess for the vector of steady-state price dispersions ∆k and sectoral taxes

τk, then:15

1. Given π = π, compute the transition matrix T

2. Using W
M ≡ w = 1, compute16 ωik = ωik × (Pk/M)1−θi

αi+
∑N

k′=1 ωik′ (Pk′ /M)1−θi
= ωik

3. λ is given by eq.(15) and η by eq.(22)

4. With that, construct the profit matrix D as in eq.(19)

5. Iterate backward on the value function V above to convergence

6. To compute the distribution, iterate forward on

g = (1 − η) · (T ′g) + ϕη′ (T ′g
)
. (C.1)

until convergence of g.

7. Given the distribution, compute the residual vectors resid1 and resid2 as in

resid1 = ∆k − (Pk/M)ϵ
∫ 1

0

(
Pk(j′)
ζk(j′)M

)−ϵ

dj′, (C.2)

resid2 = Pk/M −
∫ 1

0

(
Pk(j′)
ζk(j′)M

)1−ϵ

dj′ (C.3)

8. Search for a vector of sectoral price dispersions and taxes such that resid → 10−14.

C.2 Solving for impulse-responses in sequence space

We compute fully non-linearly the responses to an MIT shock in the space of sequences, iterating

backward in time on the value function and forward in time on the law of motion of the

distribution, under the assumption of perfect foresight. The steps are similar to those for

computing the steady state; only this time we keep track of the sequences over time. We

start by guessing sequences for time t from 1 to T = 500 months, for sectoral prices and price

dispersions (our starting guess simply equals the steady-state value for these variables). The

key assumption is that all stationary variables must return to steady state by period T . Given
15We start with the guess ∆k = 1 and τk = −1/ϵ
16We are searching for taxes τk such that the steady state equilibrium is symmetric in sectoral prices, Pk/M = 1
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this initial guess, we compute the price of the final good and consumption over time using

their definitions. Given that, we calculate λt as in eq.(15). We compute the profits Dt as in

eq.(19). Iterating backward in time from t = T to t = 0, we solve for the value function as

in eq.(21). Given the value function, we can compute the gain from adjustment Lt and the

adjustment hazard ηt. Once the backward iteration on the value function reaches period 0, we

start from the steady-state distribution and iterate forward in time on the law of motion of the

price distribution from period 1 until period T . Given the distribution, we can compute via

eq.(7) the sectoral price indices, and by

∆k,t ≡ (Pk,t/Mt)ϵ
∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′

the sectoral price dispersions. This provides us with an updated guess, with which we repeat

the previous steps until the change in the sequences (of sectoral prices and price dispersions)

becomes near zero.
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D Cashless limit

The representative household chooses a sequence of consumption, labor supply and one-period

nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (D.1)

subject to the period-by-period budget constraint

PC
t Ct +Bt = (1 + it−1)Bt−1 +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (D.2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the

level of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum

from firm j in sector i at time t, ΠC
t =

(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the

nominal wage and it is the nominal interest rate set by the central bank.

The nominal interest rate follows the following Taylor-type rule:

ι̂t = ρiι̂t−1 + (1 − ρi)
[
ϕππ

C
t + ϕcct

]
+ εi

t, (D.3)

where ι̂t ≡ log 1+it

Π/β
is the log-deviation of the nominal interest rate from its steady-state value,

πC
t ≡ log ΠC

t /Π is deviation of CPI inflation from target and ct ≡ logCt/C is aggregate GDP in

deviation from steady state. In the rule, ρi ∈ [0, 1) determines the degree of policy persistence,

ϕπ > 0 and ϕc > 0 pin down how aggressively the central bank responds to deviations of

inflation and GDP from their steady-state values, and εi
t is the monetary policy shock.

We assume the following form of households’ preferences:

u(Ct, Lt) = C1−σ
t − 1
1 − σ

− L1+φ
t

1 + φ
. (D.4)

Note that the Golosov-Lucas log-linear preferences which we use in the main text arise as a

special case when σ → 1 and φ = 0.

Given the presence of possibly non-zero steady-state inflation and the non-stationarity of

the quality processes, we appropriately normalize our variables. Unlike in the main text, where

we normalize by money supply, in the current cashless setting, we instead normalize by the

aggregate CPI price level PC
t−1. In particular, we let P̃i,t(j) ≡ Pi,t(j)

ζi,t(j)P C
t−1

be the quality-adjusted
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real price, P̃i,t ≡ Pi,t

P C
t−1

be the real sectoral price, and W̃t ≡ Wt

P C
t−1

be the real wage. Then the

equilibrium conditions for the aggregate real variables are given by:

C−σ
t = βEt

[
1 + it
ΠC

t+1
C−σ

t+1

]
(D.5)

Cσ
t L

φ
t = W̃t/ΠC

t (D.6)

Lt = ΠC
t

Ct

W̃t

[
1 −

N∑
i=1

λi,t

(
1 − ∆i,t

Mi,t

)]
+

N∑
i=1

κi,t

∫ 1

0
ηi,t(j)dj. (D.7)

where λi,t is the sectoral Domar weight (sales) share, ∆i,t is the within-sector dispersion of real

prices and Mi,t is the sectoral markup, which are given by:

λi,t = ωC
i,t +

N∑
k=1

ωk,i,tλk,t
∆i,t

Mi,t
, ∆i,t ≡ P̃ ϵ

i,t

∫ 1

0
P̃i,t(j)−ϵdj, Mi,t ≡ P̃i,t

Q̃i,t
. (D.8)

The real sectoral price indices and marginal costs in turn satisfy:

P̃ 1−ϵ
i,t =

∫ 1

0
P̃i,t(j)1−ϵdj, Q̃i,t = Qi

[
W̃t, P̃1,t, ..., P̃N,t;Ai,t

]
, ΠC

t = PC
[
P̃1,t, ..., P̃N,t

]
.

(D.9)

If the nominal price is not adjusted, then the quality-adjusted real price evolves according to:

pi,t(j) = pi,t−1(j) − σiεi,t(j) − πC
t−1, (D.10)

where πC
t−1 ≡ log ΠC

t−1.

The per-period real profits of a firm are given by:

D̃i,t(j) = P̃ ϵ−1
i,t

[
(1 − τi,t)P̃i,t(j) − Q̃i,t

]
P̃i,t(j)−ϵ × λi,t × Ct × ΠC

t . (D.11)

Finally, consider a firm with real quality-adjusted price p at the end of period t, and let p+ ≡

(p− σiεi,t+1(j) − πC
t ), where πC

t ≡ log ΠC
t . Then this firm’s real value at the end of period t is
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given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) +

+ βEt

[
{1 − ηi,t+1 (p+)}

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

Vi,t+1(p+)
]

+

+ βEt

[
ηi,t+1 (p+)

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

(
max

p′
Vi,t+1

(
p′)− κi,t+1W̃t+1

)]
.
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Figure D.1: Aggregate responses to a monetary shock under a Taylor rule

Notes: the figure shows the responses of aggregate adjustment frequency, GDP, CPI inflation and the nominal
interest rate to a one-time -500 basis points (annualized) shock to the Taylor rule (εi

0 = −0.05/12).
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Figure D.2: Aggregate responses to an aggregate TFP shock under a Taylor rule

Notes: the figure shows the responses of aggregate adjustment frequency, GDP, CPI inflation and the nominal
interest rate to a one-time transitory (ρ = 0) aggregate TFP shock of -5%.

E Additional figures

Figure E.1: Network amplification of GDP responses to monetary shocks

Notes: the figure shows the contribution of networks to the impact responses of GDP to monetary shocks of different sizes
under fixed menu costs.
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Figure E.2: Sectoral responses to a monetary shock

Notes: the top Panel shows the impact responses of sector-specific adjustment frequency to a one-time 10% monetary
shock; the bottom Panel similarly shows the scaled impact responses of sectoral price indices one-time 10% monetary
shock.
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Figure E.3: Sectoral responses to a aggregate TFP shock

Notes: the top Panel shows the impact responses of sector-specific adjustment frequency to a one-time -10% aggregate
TFP shock; the bottom Panel similarly shows the scaled impact responses of sectoral price indices one-time -10% aggregate
TFP shock.
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Figure E.4: Frequency and GDP responses to monetary shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact GDP response

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following monetary shocks of different
sizes in the economy with CalvoPlus pricing and networks, as well as in the otherwise identical economy without networks;
Panel (b) shows the impact responses of GDP to monetary shocks of different sizes in three economies: the economy with
CalvoPlus pricing and networks, as well as the otherwise identical economies without networks and with time-dependent
pricing.

Figure E.5: Frequency and inflation responses to agg. TFP shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact inflation response

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following aggregate TFP shocks
of different sizes in the economy with CalvoPlus pricing and networks, as well as in the otherwise identical economy
without networks; Panel (b) shows the impact responses of CPI inflation to aggregate TFP shocks of different sizes in
three economies: the economy with CalvoPlus pricing and networks, as well as the otherwise identical economies without
networks and with time-dependent pricing.
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Figure E.6: Frequency and GDP responses to monetary shocks: CES aggregation

(a) Aggregate frequency response (b) Impact GDP response

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following monetary shocks of different
sizes in the economy with CES aggregation, fixed menu costs and networks, as well as in the otherwise identical economy
without networks; Panel (b) shows the impact responses of GDP to monetary shocks of different sizes in three economies:
the economy with CES aggregation, fixed menu costs and networks, as well as the otherwise identical economies without
networks and with time-dependent pricing.

Figure E.7: Frequency and inflation responses to agg. TFP shocks: CES aggregation

(a) Aggregate frequency response (b) Impact inflation response

Notes: Panel (a) shows the impact responses of the aggregate adjustment frequency following aggregate TFP shocks of
different sizes in the economy with CES aggregation, fixed menu costs and networks, as well as in the otherwise identical
economy without networks; Panel (b) shows the impact responses of CPI inflation to aggregate TFP shocks of different
sizes in three economies: the economy with CES aggregation, fixed menu costs and networks, as well as the otherwise
identical economies without networks and with time-dependent pricing.
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