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Abstract

We study monetary transmission in a model of state-dependent prices and wages based on
“control costs”. Stickiness arises because precise choice is costly: decision-makers tolerate
errors both in the timing of adjustments, and in the new level at which the price or wage
is set. The model is calibrated to microdata on the size and frequency of price and wage
changes. In our simulations, money shocks have less persistent real effects than in the Calvo
framework; nonetheless, the model exhibits a substantial degree of non-neutrality, driven
mainly by wage rigidity. State-dependent nominal stickiness implies a flatter Phillips curve
as trend inflation declines, because price and wage adjustments become less frequent, making
short-run inflation less reactive to shocks. Our model can explain almost half of the observed
decline in the slope of the Phillips Curve since 2000.
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1 Introduction

The nature of the nominal frictions that cause monetary policy to transmit to the real econ-

omy remains a matter of fundamental debate. Most applied work on monetary policy imposes

reduced-form time-dependent frictions, such as the Calvo (1983) or Taylor (1979) frameworks.

But influential papers have argued that if nominal stickiness is instead derived from rational

choice —for example, from the menu cost framework, which makes the degree of stickiness “state-

dependent”— then the real effects of monetary policy are negligible (see for example Caplin and

Spulber 1987, and Golosov and Lucas Jr 2007). This claim has motivated an extensive wave of

recent research that investigates the impact of monetary policy in microfounded state-dependent

models that are closely calibrated to retail price microdata. Much of this literature concludes

that “selection effects” appear weak in microdata, and that macro models consistent with this

micro evidence deliver relatively strong real effects of monetary policy. Hence, getting the spec-

ification of frictions right matters for understanding monetary transmission, and likewise how

transmission varies with the trend inflation rate.1

A key question regarding monetary transmission today is why the inflationary impact of

increased economic activity—the slope of the Phillips curve—appears to be much lower now

than it was some decades ago. But understanding the Phillips curve suggests that we should also

consider the role of wage stickiness, instead of focusing on price stickiness only, as most literature

on state dependence has done thus far. With this issue in view, this paper constructs and

calibrates a macroeconomic model in which both price and wage adjustment are state-dependent.

A natural point of departure for our work is Erceg et al. (2000), who study the interaction of

monopolistic price- and wage-setters, both operating under Calvo frictions. Following Erceg et

al., we set up the wage setters’ problem so that it closely parallels price setting, but we impose a

microfounded model of state-dependent choice for both decisions. In this context, we find that

wage rigidities account for most of the real effects of monetary policy shocks, consistent with

the findings of Huang and Liu (2002) and Christiano et al. (2005) under the Calvo framework.

Thus, enhancing a model of state-dependent prices by allowing for state-dependent wage rigidity

too substantially strengthens the predicted real effects of monetary policy.

As the name indicates, “menu cost” models were originally motivated by the fixed costs as-

sociated with posting new prices. Given the greater complexity of labour contracting, compared

with retail price posting, the menu cost paradigm has been applied less often to studies of wage

dynamics, where time-dependent frameworks have been more common (e.g. Taylor 1979, Gertler

and Trigari 2009). Our model of nominal adjustment departs from both these alternatives, in-

stead adopting the “control cost” approach from game theory, which is motivated by the costs

1. Surveys include Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), and Klenow and Malin (2010).
For models with weaker selection effects resulting in greater non-neutrality, see Midrigan (2011); Eichenbaum
et al. (2011); Kehoe and Midrigan (2015); Dotsey and Wolman (2020); Alvarez et al. (2015); Alvarez and Lippi
(2020); Costain and Nakov (2011, 2019). On trend inflation, see Gagnon (2009) and Alvarez et al. (2019).
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of making accurate decisions.2 Firms (workers) in our model devote resources to choosing when

to reset the price (wage), and which new value to set; both types of agents may make errors in

their decisions, and a similar modelling structure can be applied to both.3 We know of only one

previous study of state-dependent prices and wages in a DSGE model (Takahashi 2017). That

paper differs from ours in that it abstracts from idiosyncratic shocks; hence it cannot be closely

assessed relative to microdata on price and wage changes. Here, we calibrate our simulations

to match the distribution of individual wage adjustments, as documented by the International

Wage Flexibility Project (Dickens et al. 2007).

Our approach, motivated by decision costs, has the advantage that it endogenously delivers

a combination of state-dependent and time-dependent features. On one hand, the cost of ac-

curately choosing the price (wage) acts somewhat like a menu cost, since it is often better to

simply leave the price or wage unchanged, so this cost component gives rise to state dependence.

Errors in the chosen price or wage help our model fit the observed distribution of adjustments

in microdata. Fitting these distributions is relevant since state-dependent models are often cal-

ibrated to match higher moments; in particular, some models make predictions about skewness

(Luo and Villar 2021) or kurtosis (Alvarez et al. 2016). On the other hand, the costs associ-

ated with accurately choosing the right moment to adjust inject a flavor of time dependence;

these costs reduce the selection effect because they cause the probability of adjustment to rise

smoothly with the value of adjustment, instead of jumping from zero to one at the “S,s band”.

By weakening the selection effect, this cost component increases the real impact of monetary

policy, improving the model’s fit to macrodata.

Since our framework abstracts from any frictions in labour mobility, it does not directly

address issues studied by the search and matching literature. However, since it endogenizes the

degree of real versus nominal impact from monetary stimulus, it can be usefully applied to other

macro-labour questions such as the dynamics of real wages, or the causes of the vanishing slope of

the Phillips curve. Akerlof et al. (1996), Fahr and Smets (2010), Benigno and Ricci (2011), and

Lindé and Trabandt (2018) have argued that asymmetric frictions, such as downward nominal

wage rigidity, can make the Phillips curve flatter when inflation is low.4 However, the cause

of the asymmetry in adjustment frictions that drives these results is left unexplained in these

papers. In contrast, we show that asymmetric frictions are in fact not necessary to obtain a

decrease in the slope of the Phillips curve as trend inflation falls. We argue that one plausible

explanation for the recent flattening of the curve is the fact that trend inflation has declined,

driving down the frequencies of adjustment of prices and wages, thus making short-run inflation

2. Control costs are a modelling device from game theory intended to capture the idea that the costs of precise
decision-making sometimes lead players to make some mistakes. See Stahl (1990), Mattsson and Weibull
(2002), or Van Damme (2002), Ch. 4.

3. This extends our earlier work (Costain and Nakov 2019, henceforth CN19), which applied the control cost
framework to retail prices.

4. In a Calvo model without idiosyncratic shocks, Ascari (2004) shows analytically that higher trend inflation
implies a flatter Phillips curve. This is because firms put more weight on future relative to current marginal
costs, compared to the case with zero inflation.
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less responsive to shocks.5 We evaluate this hypothesis using our calibrated model, and contrast

our results with US data. Our model explains almost half of the observed flattening of the

Phillips curve since 2000, as a consequence of the decline in trend inflation.

Several studies have documented changes in inflation persistence and in the size of the

inflation-unemployment trade-off. For example, King and Watson (1994) found inflation to be

close to I(1) in the 1970s, whereas more recent studies such as Ball and Mazumder (2011) and

Blanchard (2016) have found inflation to be stationary and the Phillips curve to be substantially

flatter since 1990. De Veirman (2009) makes the point that the Phillips curve is non-linear due

to endogenous price duration and therefore its slope depends on trend inflation. His approach

however is not explicitly derived from micro-foundations. Our paper is more similar in spirit to

Alvarez and Lippi (2020) who show how trend inflation affects the cumulative output response

of a money shock in a menu cost model (see their Figure 7). Ascari and Haber (2021) offer

empirical evidence that trend inflation affects the inflation-output tradeoff conditional on a

monetary policy shock. Other plausible mechanisms that result in a flattening of the Phillips

curve include better anchoring of inflation expectations (Jorgensen and Lansing 2019; Barnichon

and Mesters 2021) improved monetary policy (Roberts 2006; McLeay and Tenreyro 2020); or

increased competitive pressure due to structural change in industry (Lombardi et al. 2020; Basso

and Rachedi 2021; Andrés et al. 2021) or globalization (Forbes 2019; Heise et al. 2020).

2 Model

We embed the near-rational nominal adjustment model of Costain and Nakov (2019) in a

discrete-time New Keynesian general equilibrium framework that combines elements of Erceg

et al. (2000) and of Golosov and Lucas Jr (2007). There is a continuum of heterogeneous retail

firms and a continuum of heterogeneous workers; retail goods markets and labour markets are

both monopolistically competitive. Each firm is the unique seller of a differentiated retail good,

and resets its nominal price intermittently. Each worker is the unique seller of a differenti-

ated type of labour, and resets her nominal wage intermittently. Price and wage adjustments

are driven by idiosyncratic as well as aggregate shocks. Workers belong to a representative

household; the budget constraint is defined at the household level. In addition, there is also a

monetary authority that sets an exogenous growth process for the nominal money supply.

Our approach to nominal rigidities is based on the assumption that cognitive costs cause

people to make mistakes in their choices. To model errors, we treat decision outcomes as

random variables, and we impose a cost function on choices with the property that reducing

errors requires greater expenditures on decision-making. Given our functional form assumptions,

5. While more frequent adjustment does not necessarily reduce the real impact of monetary shocks (Caplin
and Spulber 1987), when selection effects are relatively weak, more frequent adjustment is associated with
decreased non-neutrality. Several papers have developed analytical approaches to calculating aggregate dy-
namics in heterogeneous agent models with intermittent adjustments, including Baley and Blanco (2021) and
Alvarez and Lippi (2020). The latter paper shows that, fixing the total frequency of adjustments, weaker
selection implies larger real effects.
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the probabilities of different actions take the familiar form of a weighted logit, placing greater

probability on more desirable actions. These assumptions apply both to the price or wage that

is chosen (affecting the distribution of adjustments) and to the timing of the adjustment. The

latter property drives nominal rigidity: firms and workers may fail to adjust to shocks that

would make a price or wage change objectively desirable, so the “selection effect” is reduced,

enhancing monetary non-neutrality.

2.1 Monopolistic firms

Each firm j produces output Yj,t under a constant returns technology Yj,t = Aj,tNj,t. Efficiency

units of labour, denoted Nj,t, are the only input, and Aj,t represents an idiosyncratic productivity

process that follows a time-invariant Markov process on a bounded set, Aj,t ∈ ΓA ⊆ [A,A].

Productivity innovations are iid across firms. Thus, Aj,t is correlated with Aj,t−1, but it is

uncorrelated with other firms’ shocks. Firm j is a monopolistic competitor that sets a price

Pj,t, facing the demand curve Yj,t = CtP
ε
t P
−ε
j,t , where Ct is aggregate consumption and Pt is the

price index.6 We assume each firm must fulfill all demand at its chosen price. Since firms are

infinitesimal, each firm j ignores the effect of its own price Pj,t on the aggregate price level Pt,

Pt ≡
{∫ 1

0
Pj,t

1−εdj

} 1
1−ε

. (1)

It hires labour at wage rate Wt, generating profits

Pj,tYj,t −WtNj,t =

(
Pj,t −

Wt

Aj,t

)
CtP

ε
t P
−ε
j,t (2)

per period. Firms are owned by the household, so they discount nominal income between times

t and t+ 1 at the household’s stochastic discount rate Λt,t+1, defined below.

To clarify the structure of decision-making, it helps to distinguish value functions at several

different points in time. First, let Vt(P,A) be the value of a firm that begins period t with

nominal price P and productivity A, prior to any time-t decisions, and prior to time-t output.

Figure 1 presents the firms’ timeline. We assume that choices take time, so if the firm decides

in period t to adjust its price, the new price only becomes effective at time t + 1.7 Next, let

Ot(P,A) be the firm’s continuation value, net of current profits, when it still has the option to

6. We use succinct notation where time subscripts represent dependence on the economy’s aggregate state, Ωt.
Time subscripts on aggregate variables represent functions of Ωt: Pt ≡ P (Ωt) is the aggregate price level,
Wt ≡ W (Ωt) is the aggregate wage, and Ct ≡ C(Ωt) is aggregate consumption demand. Likewise, time
subscripts on value and policy functions represent dependence on Ωt: Vt(P,A) ≡ V (P,A,Ωt), Ot(P,A) ≡
O(P,A,Ωt), and so forth.

7. A one-period lag corresponds to the timing of the model in its continuous-time limit. In continuous time,
current prices are state variables, and decisions alter the state at an infinitesimally later moment. Imposing
this structure on a discrete time version of the model simplifies the numerical solution (see footnote 17). This
one-period delay may slightly distort our quantitative analysis of the most flexible calibrations of our model,
but since we set the time period to one month, a one-period lag is not very restrictive in practice.
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TimeValue
V (P,A,Ω)

Decisions
λ, π(P ′) {

Prob. 1− λ : P ′ = P

Prob. λ : P ′ ∼ π(P ′)

Value
V (P ′, A′,Ω′)

Start t:
A,Ω real-
ized

Work and
decision-making Decision outcome

P ′ realized

Start t+ 1:

A′,Ω′ realized

Figure 1: Firms’ timeline.

adjust prices. That is,

Vt(P,A) =

(
P − Wt

A

)
CtP

ε
t P
−ε +Ot(P,A). (3)

The function Ot(P,A) incorporates the value of the firm’s two possible time-t decisions: whether

to adjust its price, and if so, which new price P ′ to set for time t+ 1. The firm may make errors

in either of these choices. We discuss these two decisions in turn, beginning with the latter.

2.1.1 Choosing a new price

Our model formalizes the idea that nominal rigidities may derive primarily from the costs of

decision-making. While one might assume that by paying a fixed cost, the firm can make the

optimal choice, this would implicitly impose a corner solution with perfect precision. We find

it more appealing and realistic to assume that firms can devote more or less time and resources

to decision-making, thus choosing more or less precisely. In equilibrium in our framework firms

will typically prefer to make choices with an interior degree of precision. Thus their chosen

action will not always be the one that would have been optimal in the absence of decision costs;

instead, most choices will involve some degree of “error”.

Consistent with this general description, we adopt the “control cost” approach from game

theory (see Van Damme 2002, Chapter 4). A key feature of this approach is that we model the

price decision indirectly: the firm’s problem is written “as if” it chooses a probability distribution

over prices, rather than choosing the price per se.8 The problem incorporates a cost function that

increases with precision: concentrating greater probability on a smaller range of prices increases

costs. Many measures of precision could be used to define decision costs; we choose a definition

based on relative entropy, also known as Kullback-Leibler divergence, which is a measure of the

difference between two probability distributions. For two possible distributions π1(x) and π2(x)

8. Luce (1959) and Machina (1985) are early advocates of analyzing decisions in terms of a probability distribu-
tion over alternatives; this approach is also adopted by Sims (2003). See Chapter 2 of Anderson et al. (1992)
for discussion.
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of some random variable x with support on set X , the Kullback-Leibler divergence D(π1||π2) of

π1 relative to π2 is defined by9

D(π1||π2) =

∫
X
π1(x) ln

(
π1(x)

π2(x)

)
dx. (4)

Following Stahl (1990) and Mattsson and Weibull (2002), we assume that the decision cost is

proportional to the Kullback-Leibler divergence of the chosen distribution (π1(x) above) relative

to an exogenous benchmark distribution (π2(x) above). Thus, if no decision costs are paid, the

action x is distributed according to the benchmark distribution, π2(x). But by putting more

effort into the decision process, the decision-maker can shrink the distribution of the action

towards the most desirable alternatives.

We assume that decision costs are denominated in units of time. The only control variable

that the firm must manage is its nominal price. We regard each adjustment of the nominal

price as a costly decision, so when the firm sets a new nominal price P̃ , this remains constant in

nominal terms until the firm again chooses to adjust. We define the cost of the decision process

relative to an exogenous benchmark distribution ηt(P̃ ) with support ΓPt .10 The time subscripts

on ηt and ΓPt allow the benchmark price distribution to change over time, so the economy may

have a nominal trend; later we detrend the model by restating it in real terms.

Assumption 1 The time cost of choosing a distribution π(P̃ ) over nominal prices P̃ ∈ ΓPt is

κfD(π||ηt), where κf > 0 is a constant, and ηt(P̃ ) is an exogenously-given benchmark distribu-

tion with support ΓPt .

Here κf represents the marginal cost of entropy reduction, in units of labour time. The cost

function described in Assumption 1 is nonnegative and convex.11 The upper bound on the cost

function is associated with a distribution that places all probability on a single price P̃ (costs

are maximized by placing all probability on one price that minimizes the benchmark probability

ηt(P̃ )). The lower bound on this cost function is zero, associated with choosing the distribution

π(P̃ ) equal to the benchmark distribution ηt(P̃ ).

Now consider the pricing decision under this cost function. If the firm sets a new nominal

price P̃ at time t, this new price only becomes effective at t+ 1, and its value is:

V e
t (P̃ , A) ≡ Et

[
Λt,t+1Vt+1(P̃ , A′)

∣∣∣A] , (5)

9. While we write (4) with an integral, we can be agnostic at this point about whether X is a discrete or
continuous set. If it is a continuous set, then π1 and π2 should be interpreted as density functions. If it is a
discrete set, then π1 and π2 should be interpreted as vectors of probabilities, and the integral in (4) should
be interpreted as a sum.

10. Our setup imposes a control cost function with an exogenous benchmark distribution. Steiner et al. (2017)
show that a general dynamic rational inattention problem is equivalent to a control cost problem with an
optimally-chosen benchmark distribution. Fixing distribution ηt(P̃ ) exogenously enhances the numerical
tractability of our framework, but still yields a form of stickiness similar to that obtained from rational
inattention.

11. See Cover and Thomas (2006), Theorem 2.7.2.

7



where Λt,t+1 is the household stochastic discount factor, and Et [•|A] represents an expectation

over the time t + 1 variables Ω′ ≡ Ωt+1 and A′ ≡ Aj,t+1 conditional on the time t aggregate

state Ωt and firm j’s time t productivity Aj,t = A. Following the control costs methodology, we

assume the firm maximizes its value by allocating probability across possible nominal prices P̃ ,

taking account of decision costs, as follows:

Ṽt(A) = max
π(P̃ )

∫
π(P̃ )V e

t (P̃ , A)dP̃ −WtκfD(π||ηt) (6)

s.t.

∫
π(P̃ )dP̃ = 1 . (7)

Note that the decision costs in (6) are converted to nominal units by multiplying by the wage

rate. We write the nominal value of the pricing decision as Ṽt(A), where A ≡ Aj,t is the firm’s

current productivity.

The first-order condition for π(P ) in problem (6) is12

V e
t (P,A)− κfWt

[
1 + ln

(
π(P )

ηt(P )

)]
− µ = 0,

where µ is the multiplier on the constraint (7). Some rearrangement yields a weighted multino-

mial logit formula:

πt(P |A) ≡
ηt(P ) exp

(
V et (P,A)
κfWt

)
∫
ηt(P̃ ) exp

(
V et (P̃ ,A)
κfWt

)
dP̃

. (8)

The parameter κf in the logit function can be interpreted as the degree of noise in the decision

process; in the limit as κf → 0, equation (8) converges to the policy function under full ratio-

nality, so that the optimal price is chosen with probability one. Plugging the logarithm of πt

into the objective, we can also derive an analytical formula for the value function:

Ṽt(A) = κfWt ln

(∫
ηt(P̃ ) exp

(
V e
t (P̃ , A)

κfWt

)
dP̃

)
. (9)

This formula gives the firm’s nominal value when adjusting its current price, net of decision

costs.

Some interpretive comments may be helpful at this point. First, while we write the firm’s

problem “as if” it chooses a probability distribution over prices, this should not be taken

literally— actually choosing a distribution would be a complex, costly diversion from the true

task of choosing the price itself. Rather, we model the decision as a choice of a mixed strategy

because this is a way to model errors. And we write it as an optimization problem because this

disciplines the errors; it means that the firm devotes time and effort to avoiding especially costly

12. Note that if we take future values V et (P̃ , A), as given, problem (6) maximizes a concave objective subject to
a linear constraint. Therefore a unique maximum exists for any given backwards induction step.
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mistakes. Aspects of the model that we do take seriously include (a) making decisions is costly

in terms of time and other resources; (b) therefore decision-makers do not always take the action

that would otherwise be optimal; (c) ceteris paribus, more valuable actions are more probable;

(d) in a retail pricing context, these considerations apply to the timing of price changes, as well

as the actual price chosen, as we will see in the next subsection.

Second, the problem is written conditional on the true expected discounted values V e
t (P̃ , A)

of the possible nominal prices P̃ , instead of conditioning on a prior, as a “rational inattention”

model would. This reflects the fact that we are not assuming imperfect information. But this is

different from saying that the firm “knows” the true values V e
t (P̃ , A). Instead, our interpretation

is that the firm has sufficient information to calculate V e
t (P̃ , A). Even so, drawing correct

conclusions from that information, and acting accordingly, may be costly.13

2.1.2 Choosing the timing of price adjustment

We next analyse, in an analogous manner, the decision whether or not to adjust at time t. As

in section 2.1.1, we define costs relative to a benchmark probability distribution over possible

actions. But for this choice, at any t, there are only two options: adjust now, or not. Since the

probabilities of these two alternatives must sum to one, effectively the relevant benchmark is

just a single number, which we can interpret as an exogenous benchmark adjustment hazard.

We suppose the time period is sufficiently short so that we can ignore multiple adjustments

within a single period. If the firm chooses not to adjust its current price P , then its nominal

price next period will be unchanged: P ′ = P ; the expected value of this unchanged price, from

the point of view of period t, is V e
t (P,A), given by (5). If instead the firm adjusts its price at t,

then its expected value is Ṽt(A), given by (9). Now suppose it adjusts its price with probability

λ. We measure the cost of this adjustment probability in terms of Kullback-Leibler divergence,

relative to some arbitrary Poisson process with arrival rate λ̄:14

Assumption 2 The time cost incurred in period t by setting the price adjustment probability

λ ∈ [0, 1] in period t is κfD(λ||λ̄), where κf > 0 and λ̄ ∈ [0, 1] are exogenous parameters.

The optimal adjustment probability at time t solves the following Bellman equation:

Ot(P,A) = max
λ∈[0,1]

(1− λ)V e
t (P,A) + λṼt(A) − WtκfD(λ||λ̄). (10)

Recall that Ot(P,A) represents the continuation value of the firm, net of decision costs, when it

13. Since economists are accustomed to models of perfect rationality, they often equate observing a given infor-
mation set with knowing all quantities that can be calculated from that information set. But when rationality
is less than perfect, we cannot equate these two situations. Here, we assume firms can observe all relevant
shocks and state variables, but we do not equate this with actually knowing V et (P̃ , A) or knowing the optimal
action, and therefore we do not equate it with implementing the optimal action with probability one.

14. In Assumption 2, we write the arguments of the Kullback-Leibler divergence as the adjustment probabilities
λ and λ̄. Under the standard notation used in eq. (4), the arguments should actually be the Bernoulli
distributions (λ, 1− λ) and (λ̄, 1− λ̄). We opt for the abbreviated notation since its meaning is clear.
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still has the option to adjust, or not adjust. The first order condition from (10) is

V e
t (P,A)− Ṽt(A) = κfWt

[
lnλ− ln λ̄− ln(1− λ) + ln(1− λ̄)

]
. (11)

Rearranging, we obtain

λt(P,A) =
λ̄

λ̄+ (1− λ̄) exp
(
−Dt(P,A)
κfWt

) , (12)

where Dt(P,A) is the expected gain from adjustment:

Dt(P,A) ≡ Ṽt(A)− V e
t (P,A).

The weighted binary logit probability function (12) was also derived by Woodford (2009) from a

model with a Shannon constraint. The free parameter λ̄ measures the rate of decision making;

concretely, the probability of adjustment in one discrete time period is λ̄ when the firm is

indifferent between adjusting and not adjusting (i.e. when Dt(P,A) = 0).

2.1.3 Deriving the Bellman equation

Next, to calculate the value function Vt(P,A), we concatenate the two decision steps described

in sections 2.1.1 and 2.1.2. If the firm starts period t with nominal price P , then its value

Vt(P,A) ≡ Vt(P,A,Ωt) at the beginning of t satisfies:

Vt(P,A) = max
λ,π(P̃ )

(
P − Wt

A

)
CtP

ε
t P
−ε + (1− λ)V e

t (P,A)−WtκfD(λ||λ̄) +

+ λ

[∫
π(P̃ )V e

t (P̃ , A)dP̃ −WtκfD(π||η)

]
(13)

s.t.

∫
π(P̃ )dP̃ = 1.

This Bellman equation subtracts off the two cost functions seen in the previous subsections.15

There is a time cost associated with monitoring whether or not a price adjustment is required,

which we will call

µt(P,A) ≡ κf

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
. (14)

15. For expositional transparency, we described pricing and timing above as two separate decisions, each with its
own entropy costs. However, these two steps can equivalently be rewritten as a single decision, subject to a
single entropy-based cost function, encompassing the alternatives of non-adjustment or of adjustment to any
P̃ ∈ ΓPt . For details, see CN19, Sec. 2.2. We will see below that the worker’s problem must generally be
written as a single combined decision, except in the special case of linear labour disutility.
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The time cost of choosing which new price to set is

τt(P,A) ≡ λκf

∫
π(P̃ ) ln

(
π(P̃ )

ηt(P̃ )

)
dP̃ . (15)

Finally, the time devoted to the actual production of goods will be written as

Nt(P,A) ≡ Ct
A

(
Pt
P

)ε
. (16)

Hence, the firm’s total demand for labour hours is

N tot
t (P,A) = Nt(P,A) + µt(P,A) + τt(P,A). (17)

2.2 Labour market

We next construct a model of nominal wage rigidity analogous to our treatment of nominal price

rigidity. We suppose each worker i is the monopolistic supplier of a specific type of labour Hi,t,

sold at wage Wi,t per unit of time. The productivity of worker i’s labour Hi,t is shifted by a shock

process Zi,t, which follows a time-invariant Markov process on a bounded set, Zi,t ∈ ΓZ ⊂ [Z,Z].

We will define Ni,t = Zi,tHi,t as the “effective labour” of worker i. By this definition, we can say

that the price of effective labour is
Wi,t

Zi,t
. The idiosyncratic shock process Zi,t represents worker-

specific productivity dynamics, which may include various forms of human capital accumulation.

Firm j’s labour input into goods production, Nj,t, is defined as a CES aggregate across

varieties of effective labour i, with elasticity of substitution εn. That is,

Nj,t =

{∫ 1

0
N

εn−1
εn

ijt di

} εn
εn−1

. (18)

We assume that firms use the same CES mix of labour for decision making that they use for

goods production. This implies that the firm’s optimal hiring for all purposes satisfies

Hijt ≡
Nijt

Zi,t
= Zεn−1

i,t

(
Wi,t

Wt

)−εn
N tot
j,t , (19)

where N tot
j,t is given by (17), and Wt is the following wage index:

Wt ≡

{∫ 1

0

(
Wi,t

Zi,t

)1−εn
di

} 1
1−εn

. (20)

Firm j’s nominal wage bill for all purposes is then∫ 1

0
Wi,tHijtdi = WtN

tot
j,t . (21)
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Total demand for worker i’s time is Hi,t = Ht(Wi,t, Zi,t), defined by

Hi,t = Zεn−1
i,t

(
Wi,t

Wt

)−εn
N tot
t ≡ Ht(Wi,t, Zi,t), (22)

where N tot
t is aggregate effective labour demand, given by integrating (17) across all firms.

The worker adjusts her nominal wage Wi,t intermittently to maximize the value of labour

income net of labour disutility. She faces control costs, both on her timing decision, and on

the choice of which wage to set. We assume workers act in the interest of the households of

which they form part, and that their consumption is fully insured by the household; hence they

discount future income at the same rate Λt,t+1 that applies to the household and firms. Now let

Lt(W,Z) be the nominal value of a worker with wage W and productivity Z at the beginning

of period t, before supplying labour, and before making any decisions. As in the case of price

decisions, we assume that a wage adjustment in period t becomes effective in period t + 1.

Therefore the value of setting the nominal wage to an arbitrary new value W̃ is

Let (W̃ , Z) ≡ Et

[
Λt,t+1Lt+1(W̃ , Z ′)

∣∣∣Z] .
We make two assumptions about workers’ decision costs that are analogous to our assump-

tions about firms.

Assumption 3 The time cost of choosing a distribution πw(W̃ ) over nominal wages W̃ ∈ Γwt

is κwD(πw||ηwt ), where κw > 0 is a constant, and ηwt (W̃ ) is an exogenously-given benchmark

distribution with support Γwt .

Assumption 4 The time cost incurred in period t by setting the wage adjustment probability

ρ ∈ [0, 1] in period t is κwD(ρ||ρ̄), where κw > 0 and ρ̄ ∈ [0, 1] are exogenous parameters.

Now, let the disutility of labour be given by

X(H) = χ
H1+ζ

1 + ζ
, (23)

where H includes both the time a worker provides to the firms and the time devoted to the

worker’s own decisions, and ζ > 0 is the inverse of the Frisch elasticity of labour supply. Adopting

this convex disutility function implies that we will not be able to separate the choice of the wage

from the choice of the timing of wage adjustment, as we did when we described the price-setting

process. Nonetheless, the wage-setting problem takes a form closely analogous to the pricing

12



problem (13):

Lt(W,Z) = max
τw,µw,ρ,πw(W )

WHt(W,Z)− Pt
u′(Ct)

·X (Ht(W,Z) + µw + τw) +

+ (1− ρ)Let (W,Z) + ρ

∫
πw(W̃ )Let (W̃ , Z)dW̃

s.t.

∫
πw(W̃ )dW̃ = 1,

µw = κw

[
ρ ln

(
ρ

ρ̄

)
+ (1− ρ) ln

(
1− ρ
1− ρ̄

)]
,

τw = ρκw

∫
πw(W̃ ) ln

(
πw(W̃ )

ηwt (W̃ )

)
dW̃ . (24)

Note that we scale labour disutility X(H) by the factor Pt/u
′(Ct), to express the whole Bellman

equation in nominal units. In (24), µw ≡ κwD(ρ||ρ̄) represents time dedicated to monitoring

whether or not it is a good moment to reset the wage. Since the probability of resetting the

wage at a given time t is ρ, Assumption 4 implies that the (expected) time devoted to choosing

a new wage in period t is τw ≡ ρκwD(πw||ηwt ).

To clarify, recall that we stated the firm’s decision in two separate steps, (10) and (6),

representing the choice whether or not to adjust prices, and the choice of what price to set con-

ditional on adjustment, respectively. This decomposition was possible because we assumed the

firm could hire any quantity of labour at the (aggregate) wage rate Wt, making its labour costs

linear in its labour demand. But imposing a linear cost function for a worker’s time use would

be highly restrictive, implying an infinite elasticity of labour supply. In the absence of decision

costs, a worker would set the real wage as a function of the marginal utility of consumption only;

productivity shocks would cause variation in hours worked without any change in the wage.16

To avoid this restrictive calibration, we allow for convex disutility. But therefore we cannot just

condition on a given, constant marginal cost of labour; time supplied to firms affects the cost of

time on each decision margin, so both margins are analysed simultaneously in problem (24).17

Nonetheless, the policy functions for wage setting and wage adjustment timing resemble the

policy functions from the firm’s problem. Following our previous calculations, we find that if

16. A specification with linear labour disutility is analysed in our working paper, Costain et al. (2019).

17. Inspecting problem (24) clarifies how a one-period decision lag simplifies the numerics. If the wage for time-t
work were chosen at t, then the marginal cost of time-t choice would depend on an expectation over labour
demand at each possible time-t wage. This would severely expand the dimension of the numerical calculation.
This technicality does not arise in the firm’s problem, where the marginal cost of time used is constant.
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the worker adjusts, she chooses the following density over next period’s nominal wages:18

πwt (W ′|W,Z) ≡
ηwt (W ′) exp

(
Let (W

′,Z)
κwxt(W,Z)

)
∫
ηwt (W̃ ) exp

(
Let (W̃ ,Z)
κwxt(W,Z)

)
dW̃

, (25)

where xt(W,Z) denotes the marginal disutility of time in period t:

xt(W,Z) ≡ Pt
u′(Ct)

X ′(Ht(W,Z) + τw + µw) . (26)

Likewise, if the worker’s beginning-of-period wage and productivity areW and Z, her optimal

adjustment probability must satisfy:

ρt(W,Z) =
ρ̄

ρ̄+ (1− ρ̄) exp
(
−Dwt (W,Z)
κwxt(W,Z)

) , (27)

where

Dw
t (W,Z) ≡ L̃t(W,Z)− Let (W,Z)

represents the gain in value from adjusting rather than leaving the nominal wage unchanged.

The key to solving the worker’s equations is to calculate the marginal disutility of time,

xt(W,Z). If we know the aggregate variables Pt, Wt, Ct, and Nt, then labour demand Ht(W,Z)

is known from (22). In a context of backwards induction, where function Let (W,Z) is known,

we can then solve a fixed-point problem to find xt(W,Z). By guessing xt(W,Z) at a given pair

(W,Z), we can construct the probabilities and the probability rate from (25) and (27), and then

calculate the decision time costs τwt (W,Z) and µwt (W,Z) from the constraints on (24). Summing

Ht(W,Z) + τwt (W,Z) + µwt (W,Z), we can then update xt(W,Z) using (26).19

2.3 Household

The household consists of a continuum of heterogeneous workers of unit mass, who aggregate

their resources to choose household consumption Ct, and bond and money holdings Bt and Mt.

Utility is discounted by factor β ≡ βIβS per period, where βI represents the effect of pure

impatience, and βS is the probability of survival (each individual worker dies and is replaced

by a new individual with probability 1 − βS per period). Household consumption Ct is a CES

18. There is also an analytical formula for the worker’s value function, analogous to (9); see the working paper
Costain et al. (2019).

19. While problem (24) has two separate entropy cost terms, actually these two can be rewritten as a single
entropy cost term (see CN19, Sec. 2.2, for discussion). Since labour disutility is convex, a unique well-defined
solution exists for the maximization problem at any backwards induction step. Hence we conclude that the
algorithm described here to calculate xt(W,Z) has a unique fixed point, which characterizes the marginal
value of time in problem (24).
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aggregate of differentiated products Cj,t:

Ct =

{∫ 1

0
C
ε−1
ε

j,t dj

} ε
ε−1

, (28)

where ε is the elasticity of substitution across varieties.

Besides the wage setting decisions already discussed, the household must choose {Cj,t, Bt,Mt}∞t=0

to maximize expected discounted utility:

Et

[ ∞∑
τ=t

βτ−t

(
C1−γ
τ − 1

1− γ
−
∫ 1

0
X(Htot

it )di + ν ln

(
Mτ

Pτ

))]
, (29)

subject to a per-period budget constraint:∫ 1

0
Pj,tCj,tdj +Mt +R−1

t Bt =

∫ 1

0
Wi,tHi,tdi+Mt−1 +Bt−1 + TMt + TDt . (30)

Here
∫ 1

0 Pj,tCj,tdj is total nominal consumption, TMt is a lump sum transfer from the central

bank, and TDt is a dividend payment from the firms.
∫ 1

0 Wi,tHi,tdi is total labour compensation

received from supplying the differentiated labour varieties Hi,t, and Htot
i,t = Hi,t + τwi,t + µwi,t

is the total labour effort, including decision-making, of worker i. Each worker’s labour and

decision-making will vary with their current state (W,Z) as discussed previously.

Optimal consumption across the differentiated goods implies

Cj,t = (Pj,t/Pt)
−εCt, (31)

so nominal spending can be written as PtCt =
∫ 1

0 Pj,tCj,tdj under the price index Pt, given by

equation (1). The first-order conditions for total consumption and for money use are

R−1
t = 1− v′(Mt/Pt)

u′(Ct)
= Et[Λt,t+1], (32)

where the household’s stochastic discount factor is given by:

Λt,t+1 ≡
Ptu
′(Ct+1)

Pt+1u′(Ct)
. (33)
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2.4 Monetary policy

We consider a monetary authority that generates an exogenous process for the money growth

rate. We assume the nominal money supply is affected by an AR(1) shock g,20

gt = φggt−1 + εgt , (34)

where 0 ≤ φg < 1 and εgt ∼ i.i.d.N(0, σ2
g). Here gt represents the time t rate of money growth:

Mt/Mt−1 ≡ µt = µ∗ exp(gt). (35)

Seigniorage revenues are paid to the household as a lump sum transfer TMt , and the government

budget is balanced each period, so that Mt = Mt−1 + TMt .

In our money-in-the-utility model, an exogenous rise in nominal money growth causes house-

holds to demand more consumption, as the marginal utility of consumption rises, relative to that

of money. Higher consumption represents a rise in output demand for firms which, given sticky

prices, increase their production and labour demand. The aggregate price level rises too, yet it

does so more slowly than nominal money. The increased labour demand leads some workers to

set higher wages, but in the short run most continue supplying the labour demanded at their

current sticky nominal wage.21

2.5 Aggregation

Summing across all goods, labour supply and goods demand must satisfy

Nt =

∫ 1

0
Cj,tA

−1
j,t dj =

∫ 1

0
Ct

(
Pj,t
Pt

)−ε
A−1
j,t dj ≡ Ā−1

t Ct, (36)

where Nt is the component of effective labour dedicated to goods production, and

Āt ≡

(∫ 1

0

(
Pj,t
Pt

)−ε
A−1
j,t dj

)−1

(37)

is a measure of aggregate productivity related to the degree of inefficient price dispersion, dis-

cussed by Yun (2005) and Nakamura et al. (2018).

Likewise, summing across goods and workers, the relation between labour hours and effective

labour is

Ht = N tot
t

[∫
Zεn−1
i,t

(
Wi,t

Wt

)−εn
di

]
= N tot

t Z̄−1
t , (38)

20. In related work (Costain and Nakov 2011) we have studied state-dependent pricing when the monetary
authority follows a Taylor rule. Our conclusions about the degree of state-dependence, microeconomic stylized
facts, and the real effects of monetary policy were not greatly affected by the type of monetary policy rule
considered. Therefore we focus here on the simple, transparent case of a money growth rule.

21. The same intuition holds also in the Calvo setup, e.g. in Gaĺı (2008), Ch.6.
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where Ht is the component of labour time sold to firms, and

Z̄t ≡

(∫ 1

0

(
Wi,t

Zi,tWt

)−εn
Z−1
i,t di

)−1

(39)

measures the aggregate productivity of labour time in producing effective labour.

To compute a recursive equilibrium of this economy, we must identify its aggregate state,

which will include aggregate shocks and the distribution of idiosyncratic states. Since nominal

prices are predetermined under our assumed timing, it is natural to conjecture that the nominal

state of the economy is summarized by:

Ωt ≡ (Mt, gt,Φt,Φ
w
t ), (40)

where Φt and Φw
t are the distributions of nominal prices and productivities across firms, and

nominal wages and productivities across workers. Online appendix B shows that the model is

homogeneous of degree one in nominal variables, so the corresponding real state variable would

be:

Ξt ≡ (gt,Ψt,Ψ
w
t ), (41)

where Ψt and Ψw
t are the distributions of real prices and productivities across firms, and real

wages and productivities across workers. It can be shown that this is a valid state variable for

the economy by constructing an equilibrium in terms of Ξ.

Online Appendix B will show how to detrend the economy, so that it depends only on the

real state Ψt instead of nominal Ωt. Online Appendix C derives the distributional dynamics.22

3 Calibration

We simulate the model at monthly frequency on a discrete grid, and discipline its key parameters

using microdata on price and wage adjustments.

Data sources

As in CN19, our pricing data come from the Dominick’s supermarket dataset documented by

Midrigan (2011).23 These data represent weekly regular price changes, excluding temporary

sales, and are displayed (in logs) as a blue-shaded histogram in the left panel of Figure 2.

We aggregate weekly adjustment rates to monthly rates for comparability with most related

studies. We exclude sales because recent literature has argued that monetary nonneutrality

depends primarily on the frequency of “regular” or “non-sale” price changes (e.g. Eichenbaum

22. After detrending, we discretize the two real distributions and solve for the model’s dynamics by the Reiter
(2009) method. Replication codes are available at https://github.com/borjapetit/costainnakovpetit2021.

23. We are grateful to Virgiliu Midrigan for making his price data available to us, and to the James M. Kilts
Center at the Univ. of Chicago GSB, which is the original source of those data.
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et al. 2011; Guimaraes and Sheedy 2011; or Kehoe and Midrigan 2015).24.

Our wage change data are from the International Wage Flexibility Project (IWFP), seen as

a blue histogram in the right panel of Figure 2; these data are taken from Figure 2a of Dickens

et al. (2007). The histogram aggregates data on wage adjustments across multiple countries.

While most of the underlying national data are drawn from surveys of firms, they refer to annual

nominal wage changes of individual workers who remain employed by the same firm. The IWFP

focused on annual changes because it observed a widespread tendency for wages to change once a

year in many countries, which in turn means that most available surveys address annual changes.

Clearly this makes our data on wage changes less than perfect for comparison with our price

change evidence, which is at weekly frequency. Nonetheless, to get an empirical counterpart for

our theoretical model, we will take the IWFP data at face value.25 Therefore, we assume that

the monthly frequency of nominal wage adjustment is 1/12=0.083, and calculate nominal wage

change statistics directly from the IWFP histogram.

Exogenous parameters

Some parameters are taken either from related papers or from standard values in the literature.

We set the (inverse) Frisch elasticity to ζ = 0.5, and ν = 1. Following Golosov and Lucas Jr

(2007), we set γ = 2, χ = 6, and ε = 7, and we set the same elasticity of substitution across

varieties of labour as that across goods: εn = 7. The discount factor is set to β = 0.9967,

which corresponds to four percent annual discounting. The monthly survival probability is

βS = 0.9979, implying an expected working life of forty years. The log productivity of newborn

workers is set to z0 = −0.6, so that workers expect a 60 log points (82%) productivity gain over

their life cycles. We assume two percent annual money growth in steady state, consistent with

our retail pricing data. Table 1 collects these parameters.

Calibrated parameters

We next calibrate internally the decision cost parameters underlying the price- and wage-setting

problems, as well as the productivity processes affecting firms and workers. These processes are

assumed to follow discretized approximations of the following AR(1) dynamics:

aj,t = ρaaj,t−1 + σaε
a
t ,

zi,t = ρzzi,t−1 + σzε
z
t ,

24. However, some authors dispute this conclusion; see Kryvtsov and Vincent (2014), Nevo and Wong (2019) and
Alvarez and Lippi (2020)

25. Recently, Grigsby et al. (2021) study wage adjustment using higher-frequency data more comparable to
retail price microdata. In U.S. data from a large payroll data processing firm, they find a wage adjustment
probability of 26.0% quarterly and 72.7% annually; the mean absolute wage change, conditional on adjustment,
is 10.7%. Considering job stayers only, they find a 66.3% annual wage change probability, with a mean absolute
change of 6.34%. While their data imply somewhat larger wage changes than the IWFP data in our graphs,
nonetheless, for job stayers, the order of magnitude is similar.
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Table 1: Exogenous parameters

Parameter Description Value Source

β Discount factor (monthly) 0.9967 Annual real rate of 4%
βS Survival probability (monthly) 0.9979 Economic life span of 40 years
z0 Log productivity at birth −0.6 Normalization
ζ Inverse Frisch elasticity 0.5 Standard value
ν Coefficient on utility of money 1 Standard value
γ Intertemporal elasticity of subs. 2 Golosov and Lucas Jr (2007)
χ Coefficient on disutility of labor 6 Golosov and Lucas Jr (2007)
ε, εn Elasticities of subs. across varieties 7 Golosov and Lucas Jr (2007)
µ∗ Long-run gross money growth 1.0017 Annual inflation of 2% (Dominicks’)

where εat and εzt are i.i.d. normal shocks with mean zero and unit variance.

Overall, we calibrate 8 parameters, collected in the vector P = (λ̄, κf , ρa, σa, ρ̄, κw, ρz, σz).

We select P by minimizing:

F(P) = (M(P)− M̄)′W(M(P)− M̄),

where M(P) is a vector of model-generated moments when the parameter vector is P, M̄ is

a vector of the corresponding moments computed from our price and wage data, and W is

a weighting matrix.26 The vector M(P) contains the adjustment probabilities for prices and

wages, as well as the histogram of (discretized) nonzero log price and log wage changes.

Table 2: Calibrated parameters

Parameter Value

Firms Benchmark hazard (monthly) λ̄ 0.2707
Adjustment cost κf 0.0177
Productivity persistence ρa 0.6441
Standard deviation productivity shocks σa 0.0703

Workers Benchmark hazard (monthly) ρ̄ 0.2317
Adjustment cost κw 0.0275
Productivity persistence ρz 0.9700
Standard deviation productivity shocks σz 0.0574

Table 2 collects the calibrated adjustment function and productivity process parameters:

since wages are more rigid than prices in the data, the adjustment cost for wages is estimated to

be substantially higher than that of prices, and the benchmark adjustment probability is lower.

At the same time, workers’ productivity is estimated to be more persistent but less volatile than

firms’ productivity. This makes sense, since worker productivity reflects persistent processes

26. MatrixW weighs the adjustment probability for prices (wages) with the square root of the number of histogram
bins for price (wage) changes, ensuring sufficient weight on the frequency component so that we match the
empirical adjustment frequencies well.
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Figure 2: Distribution of nonzero price and wage changes.

such as skill accumulation and life-cycle effects.27

Model fit to aggregate steady-state

Figure 2 presents the model-generated histograms of non-zero price and wage changes (solid

blue lines), as well as those in the data (grey area). Our simulation perfectly matches the

adjustment probabilities of prices and wages (10.2% and 8.3% monthly, respectively). These

“zero changes” are excluded from the graphs, which would otherwise need rescaling, making

the histograms of non-zero changes harder to see. Fitting the complex shapes of the non-zero

price and wage change histograms is more difficult, especially given our symmetric adjustment

costs and technologies; the model-generated distributions are notably smoother than the data.

But our model reproduces several features of the data. As in the empirical histograms, much of

the mass is concentrated on small positive adjustments, but there is a fat right tail and a long,

thinner left tail, and there is “missing mass” in the region of of small negative wage adjustments.

Such a pattern of “missing mass”, compared with a normal distribution for example, is often

taken to indicate downward nominal wage rigidity. It is interesting that our model, in which

rigidities are entirely symmetric, also shows a dip in the mass just below zero, although this

effect is weaker than it is in the data. In particular, wage changes between −2.5 and zero log

points are 14% of all wage changes in the model, but only 4% in the data.28 In our model,

despite downward and upward wage adjustments being equally costly, workers rarely choose to

make small negative wage changes because they expect their productivity to grow as they age,

and because the nominal price level has a positive trend. While workers have an incentive to set

a higher wage when they become more productive, they can react to small negative productivity

shocks by waiting for price inflation to reduce their real wage, or for productivity growth to

27. Our estimation imposes an upper bound on productivity persistence, in order to limit the size of the required
simulation grid. Workers’ estimated productivity persistence, 0.97, hits the upper bound.

28. Price and wage changes are reported in log points, where +1 log point corresponds approximately to a 1%
increase (and +70 log points correspond approximately to multiplying by 2).
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Figure 3: Adjustment behavior in the baseline model.
Notes: Distribution of price and wage changes (panels A and C) and price and wage adjustment probabilities
(panels B and D); x-axis shows deviation of the log price or wage from its unconditional mean. The blue
lines refer to a firm (worker) with cost (productivity) level in the 25th percentile of the cost (productivity)
distribution; red lines refer to the median; yellow lines refer to the 75th percentile.

cancel out the shock.

Figure 3 shows the logit probabilities governing price resets and wage resets (left panels)

and firms’ and workers’ adjustment probabilities (right panels) for low-, medium-, and high

productivity firms/workers. For firms (top row), the probabilities are shown as functions of the

lagged price, conditional on three possible realizations of marginal cost (inverse productivity);

for workers, the probabilities are shown as functions of the lagged wage, conditional on three

productivity levels. Firms prefer higher prices when costs are higher, and the probability of

adjustment rises smoothly as firms deviate from the prices they prefer (conditional on costs).29

As a consequence of our nonlinear disutility specification, workers set substantially higher wages

as their productivity rises.30 The preferred wage varies by roughly 6 log points as worker

productivity varies from the 25th to the 75th percentile of the workers’ productivity distribution.

29. Such evidence of state-dependent pricing in a retail context is presented in Eichenbaum et. al. (2011) using
a weekly scanner dataset, see their Fig.8.

30. Our working paper, Costain et al. (2019), also presents a simulation of the linear labour disutility case. Linear
disutility simplifies the numerical solution, but implies that the optimal wage choice does not vary with
idiosyncratic productivity. Unsurprisingly, the resulting wage adjustment behaviour is highly counterfactual.
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4 Results

We first study the steady-state and dynamic effects of nominal rigidity by comparing four cal-

ibrations of the model that vary the degree of noise in price- and wage-setting. We then turn

to our main application: exploiting the state-dependence of price and wage setting to study

nonlinearities in the effects of monetary policy, including how long-run inflation affects the slope

of the Phillips curve.

4.1 Effects of noise in price and wage setting

We begin by analyzing how decision costs affect the frequency and the distribution of price and

wage adjustments, asking which noise margin contributes most to the non-neutrality of mone-

tary shocks. To do so, we compare our calibrated model to three counterfactual alternatives,

presented in table 3. First, we simulate an economy in which we make prices flexible, by dividing

κf by 100, while keeping wages sticky as in the baseline economy. Then, we keep prices sticky

while making wages flexible, dividing κw by 100. Finally, we simulate an economy in which both

prices and wages are flexible. To ease the exposition, we label the counterfactual versions as FP

(flexible prices), FW (flexible wages), and FPFW (both flexible), respectively.

Table 3: Adjustment parameters for counterfactual exercises

Baseline FP FW FPFW

Firms (κf ) κ0f = 0.0177 κ0f/100 κ0f κ0f/100

Workers (κw) κ0w = 0.0275 κ0w κ0w/100 κ0w/100

4.1.1 Steady-state adjustment behaviour

Table 4 reports the effects of reducing stickiness on steady-state adjustment statistics, comparing

the four configurations of noise parameters. Decreased noise in price setting or wage setting

makes adjustment more frequent: when prices are flexible, the frequency of price adjustment

increases from 10% to almost 60%. Similarly, when wages are flexible, the frequency of wage

changes rises from from 8.34% in the baseline economy to 30.8%. When lower noise makes

adjustment more frequent, prices and wages tend to deviate less from their desired levels than

they do in the baseline economy. Consequently, decreasing the noise in price and wage setting

implies smaller absolute changes on average. This effect is particularly strong for wages: in the

baseline economy one fourth of wage changes were smaller than 2.5 log points, while when wages

are flexible this increases to 80% of all wage changes. This large decrease in the size of wage

changes occurs both because the baseline estimated noise parameter is higher for wages, and

because convex labour disutility makes wage deviations especially costly.

This change in firms’ and workers’ adjustment strategies is illustrated in Figure 4, which

compares the histograms of nonzero price and wage changes in the baseline economy with those
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Figure 4: Distribution of nonzero price and wage changes: varying κf and κw.
Notes: left panel shows the effect of decreasing price stickiness on the distribution of nonzero price adjust-
ments, keeping wages sticky. Right panel shows the effects of decreasing wage stickiness on the distribution
of nonzero wage adjustments, keeping prices sticky.

of versions FP (left panel) and FW (right panel). When prices and wages are sticky (red

lines), both histograms are smooth and display rather fat tails. As prices (wages) become

more flexible, the price (wage) adjustment histogram becomes sharply bimodal, increasingly

resembling the familiar (S, s) behaviour of a menu cost model. Errors in pricing and timing

smooth out the distribution of changes under the baseline calibration, but as noise is reduced,

stronger selection effects imply that the preponderance of price changes occur around two upper

and lower thresholds. With sufficiently low noise, the firm (worker) rarely permits any large

deviations from the optimal price (wage). Still, when the price or wage is already close to its

target, it is optimal to avoid adjusting, thereby avoiding decision costs and the risk of errors.

Therefore, the adjustment distributions in scenarios FP and FW are much spikier than their

empirical counterparts (which were seen in Fig. 2), with typical changes that are less than half

as large as those in the data (a mean absolute price change of 4.53 log points in specification

FP, and a mean absolute wage change of 1.95 log points in specification FW).

4.1.2 Costs of frictions

Lower noise permits firms and workers to spend less on decision-making while setting prices

and wages closer to their optimal values, which in effect increases the aggregate productivity

Āt of effective labour, and likewise implies higher Z̄t: more effective labour per unit of labour

time. The top panel of Table 4 shows the steady state output losses Θp
t due to pricing frictions,

expressed as a percentage of aggregate consumption Ct, which are 2.78% under the baseline

parameters. The losses compared with aggregate consumption Cfpt under flexible prices can be

decomposed as follows (see Appendix A):

Θp
t =

Cfpt − Ct
Ct

=

(
Āfp − Āt

Āt

)
N tot

Nt
+

µt
Nt

+
τt
Nt
. (42)
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Table 4: Evaluating the model with different values of κf and κw

Data Base. FP FW FPFW

Prices Frequency of price change (%) 10.20 10.21 59.51 10.21 59.65
Mean absolute price change (%) 9.90 6.94 4.53 6.92 4.52
Skewness of price changes -0.42 -0.12 -0.06 -0.12 -0.06
Kurtosis of price changes 4.81 4.60 2.01 4.60 2.01
Standard deviation of (log) prices (×100) – 3.73 4.57 3.72 4.57

% of price changes > 0 65.10 56.47 52.37 56.49 52.37
% of abs price changes < 0.025 12.00 27.26 25.69 27.27 25.84

Output losses due to price stickiness (%)a, Θp – 2.78 1.16 2.77 1.16
Cost θp∗ of decision errors (%)b – 1.51 0.91 1.51 0.91
Cost of price setting (%)b – 0.47 0.03 0.47 0.03
Cost of timing choice (%)b – 0.49 0.07 0.48 0.07

Wages Frequency of wage change (%) 8.30 8.34 8.33 30.81 30.68
Mean absolute wage change (%) 6.47 5.50 5.50 1.95 1.96
Skewness of wage changes 0.35 0.17 0.17 -0.46 -0.46
Kurtosis of wage changes 4.39 11.94 11.70 2.00 2.00
Standard deviation of (log) wages (×100) – 3.52 3.38 3.60 3.45

% of wage changes > 0 86.50 70.62 70.60 66.75 66.77
% of abs wage changes < 0.025 11.80 25.17 25.17 80.21 80.02

Output losses due to wage stickiness (%)a, Θw – 1.98 2.00 0.08 0.08
Cost θw∗ of decision errors (%)b – 0.74 0.76 0.18 0.18
Cost of wage setting (%)b – 0.94 0.95 0.03 0.03
Cost of timing choice (%)b – 1.09 1.10 0.08 0.08

Total output losses relative to frictionless economyc, Θ – 2.35 1.74 1.45 0.83

aOutput losses (Θp and Θw) differ from the sum of the following cost terms because output loss includes general
equilibrium effects.
bThe sum of the three cost terms in prices (wages) panel represents the gain accruing to a single firm (worker)
unconstrained by decision costs (κf = 0 or κw = 0).
cTotal output losses Θ differ from Θp + Θw because Θ includes change in labor effort.

The time firms spend on decisions, µt+ τt, costs 0.96% of output under the baseline parameters,

falling to 0.1% of output in the flexible-price cases. The term (Āfp − Āt)/Āt measures how

inefficient price dispersion changes, as aggregate productivity rises from Āt (with frictions) to

Āfp (without). This misallocation term combines partial equilibrium gains from reduced price

errors with the general equilibrium effect of changing the overall price level.31 But to isolate

the partial equilibrium effects of price flexibility we instead report θp∗t , the potential increase in

the representative firm’s profits from eliminating errors, holding the rest of the economy fixed.

Like the decision costs, these potential gains are expressed as a fraction of aggregate output

(equivalently, aggregate consumption or revenues). The gains from eliminating errors are 1.51%

of output in the baseline case, falling to 0.91% in cases FP and FPFW. The sum of the three

rows in italics represents a single firm’s gains from eliminating its price frictions (holding the

31. The misallocation term (not shown in the table) can be inferred by subtracting pricing and timing costs from
output losses Θp

t .
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rest of the economy fixed), which is 2.47% of output in the baseline specification.

Analogous cost terms apply for workers, whose losses (as a fraction of output, holding fixed

labour effort) can be decomposed as

Θw
t =

Cfwt − Ct
Ct

=
Z̄fwt − Z̄t

Z̄t
+

µwt
Ht

+
τwt
Ht

, (43)

where Ht ≡ Ht− Z̄−1
t (µt + τt) is labour time devoted to goods production. Output costs derive

in part from workers’ time spent on decisions, µwt + τwt ; these costs decrease from 2.03% of

consumption (twice as large as the decision costs of firms) in the baseline case, to 0.11% of

consumption in cases FW and FPFW. Misallocation effects derive from the difference in units

of effective labour per unit of labour time when wages are flexible (Z̄fwt ) or sticky (Z̄t). We also

report the gains θw∗ to a single worker who makes error-free decisions, holding fixed the rest of

the economy. These gains fall from 0.74% of consumption in the baseline economy to 0.18% in

the flexible wage simulations.

Finally, the last line of Table 4 reports the total consumption loss caused by price and wage

frictions, compared to a frictionless economy. Appendix A shows that these losses equal

Θ =
ĀflZ̄flt
ĀtZ̄t

− 1

︸ ︷︷ ︸
Misallocation

+
µwt + τwt
Ht︸ ︷︷ ︸

Wage setting

+
µt + τt
Nt︸ ︷︷ ︸

Price setting

+
Āflt Z̄

fl
t (Hfl

t −H)− ĀtZ̄t(Htot
t −H)

ĀtZ̄tHt︸ ︷︷ ︸
Labour effort

(44)

The misallocation term incorporates the misallocation components of Θp and Θw (plus their

interactions); therefore it combines partial equilibrium errors and general equilibrium effects due

to changes in aggregate prices and wages. The overall loss is 2.34% of aggregate consumption

in the baseline model, falling to 0.83% in the nearly frictionless model FPFW. This overall

loss is less than the sum Θp and Θw because the negative wealth effect from imposing frictions

motivates workers to supply more labour effort. This effect is the fourth term in (44); it is not

included in Θp, which is computed fixing N tot
t , or in Θw, which holds Htot

t fixed.

4.1.3 Effects of monetary policy shocks

We next analyse how price- and wage-setting frictions affect the non-neutrality of monetary

shocks. Figure 5 shows the effects of an autocorrelated money growth shock with monthly

persistence 0.8. The figure compares the responses of the aggregate nominal price and wage

levels, consumption, hours and the real wage as price and wage stickiness vary, across the

different combinations of noise parameters. On impact, all the specifications exhibit similar

effects, in particular consumption rises by 2.5%. The effects are similar on impact because we

assume firms and workers cannot react to the shocks contemporaneously, but thereafter the

four specifications behave differently. The baseline case (blue line), with both sticky prices

and wages, implies substantial real effects of a monetary shock: the consumption and labour

responses exhibit a half-lives of 7 and 8 months, respectively. This amounts to an 1.4% increase in

25



0 5 10 15 20

Months

0

0.2

0.4

0.6

0.8

1
M

on
ey

 g
ro

w
th

 Baseline
 (FP) Flexi. prices
 (FW) Flexi. wages
 (FPFW) Both flexible

0 5 10 15 20

Months

0

1

2

3

4

5

6

P
ric

e 
le

ve
l

0 5 10 15 20

Months

-0.5

0

0.5

1

1.5

2

2.5

C
on

su
m

pt
io

n

0 5 10 15 20

Months

-0.5

0

0.5

1

1.5

2

2.5

La
bo

r

0 5 10 15 20

Months

0

1

2

3

4

5

6

W
ag

e 
le

ve
l

0 5 10 15 20

Months

-0.5

0

0.5

1

1.5

2

2.5

R
ea

l w
ag

e

Figure 5: Money growth shock: effects of nominal rigidity.
Notes: Impulse responses to a 1 percent money supply shock (autocorrelation 0.8). Blue: Baseline model,
with both prices and wages sticky. Red: (FP), flexible prices and sticky wages. Yellow: (FW), sticky prices
and flexible wages. Purple: (FPFW): both prices and wages flexible.

consumption over the year following the shock, and an additional 0.17% increase in the following

year. When prices become flexible, these real effects decrease to a consumption half-life of 6

months. The decrease in real effects is much more significant when wages are flexible: the half-

life of the consumption IRF falls to only 4 months. As expected, the smallest real effect is found

in the FPFW specification, which has very low real persistence, as in the Golosov and Lucas Jr

(2007) menu cost model. In this case, with both price and wage flexibility, the half-life of the

consumption and labour responses is only 2 months, with just a 0.33% increase in consumption

over the first year.

Overall, these results show that the real effects of money shocks are large as long as wages are

sticky. Version FP (sticky wages and flexible prices) has almost the same consumption response

as the baseline economy, and lies substantially above FW (flexible wages and sticky prices).

Intuitively, the reason why wage stickiness is crucial for non-neutrality is that it prevents rapid

adjustment of firms’ marginal costs, so even though prices are much more flexible in version FP

than under the baseline calibration, the impulse responses of the price level in the two cases are

quite similar.32 Both wages and prices adjust gradually in version FP, giving a real effect on

consumption and output that is almost as large and persistent as that seen in the baseline case.

The key takeaway is that wage rigidity matters more than price rigidity for the overall

degree of monetary non-neutrality in this model, consistent with the findings of Christiano et al.

32. In contrast, as Table 4 showed, when firms’ marginal costs fluctuate for exogenous reasons, such as the
productivity shocks Aj,t, prices do change more in version FP than in the baseline version.
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(2005) and Huang and Liu (2002) for the Calvo model. The importance of wage rigidity for

propagation of nominal shocks to real variables provides support for New Keynesian mechanisms

in the light of empirical evidence of increased markups of price over marginal cost conditional

on positive demand shocks (Nekarda and Ramey 2013). On the other hand, our findings do not

offer any strong macroeconomic reason to favor the baseline specification with both rigidities

versus version FP, where only wages are rigid. Empirical studies rarely find a significantly

nonzero response of the real wage to monetary policy shocks (see for example Christiano et al.

2005; McCallum and Smets 2007; Olivei and Tenreyro 2007; Christiano et al. 2016). This would

suggest rejecting specification FW, but may not suffice to distinguish between parameterizations

FP and FPFW on macroeconomic grounds alone.

4.2 Trend inflation and the slope of the Phillips curve

A crucial ongoing debate related to the effectiveness of monetary policy is how to understand

the slope of the Phillips curve. We will see that state-dependent adjustment helps explain the

curve’s apparent flattening, as a response to changes in trend inflation. But before we look

directly at this issue, we first examine the effects of trend inflation in our model more generally.

4.2.1 Microeconomic effects of trend inflation

Considering the current prolonged “lowflation” episode, it is important to ask how trend inflation

affects state-dependent adjustment behaviour. To this end, we simulate five economies with

inflation trends varying from -2% to 8%, under the baseline noise parameters. We then repeat

the simulations, changing the noise parameters, to shed light on the role of price and wage

stickiness in accounting for the real effects of monetary policy as trend inflation varies.

Table 5 reports steady state statistics, under the baseline noise parameters, for trend inflation

rates from -2% to 8%. The frequency of price and wage adjustment increases as the trend

inflation rate deviates from zero. At exactly 0% inflation, firms and workers only need to adjust

their prices and wages in response to productivity shocks. When trend inflation differs from 0%,

though, they must also make adjustments to keep their prices and wages at their desired real

levels. Therefore, firms and workers raise their monthly adjustment probabilities by 4.2 and 3

percentage points, respectively, as we move from 0% to a 4% inflation trend.

Likewise, the same increase in trend inflation causes the share of positive price and wage

changes to rise too, going from 44% to 63% in the case of prices, and from 54% to 78% for

wages33. In contrast to the effects of a reduction in adjustment costs, the higher adjustment

probability is not accompanied by smaller price and wage changes. As trend inflation rises from

2 to 8%, the average absolute sizes of price and wage changes both increase by 1.45 log points.

This increase is somewhat at odds with the evidence of Nakamura et al. (2018), who showed

33. Figure D1 in Online Appendix D shows the histograms of price and wage changes at different trend inflation
rates.
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Table 5: Evaluating the baseline model at different trend inflation rates

Trend inflation rate

-2% 0% 2% 4% 8%

Prices Frequency of price change (%) 10.06 7.65 10.21 11.87 14.37
Mean absolute price change (%) 6.78 6.21 6.94 7.49 8.39
Skewness of price changes 0.33 0.09 -0.12 -0.25 -0.41
Kurtosis of price changes 4.76 5.09 4.60 4.41 4.28
Standard deviation of (log) prices (x100) 3.69 2.97 3.73 4.18 4.80

% of price changes > 0 34.35 44.21 56.47 62.65 70.03
% of abs price changes < 0.025 27.66 35.26 27.26 23.25 18.79

Output losses due to price stickiness (%)a, Θp 2.77 2.69 2.78 2.85 2.99
Cost θp∗ of decision errors (%)b 1.51 1.46 1.51 1.55 1.60
Cost of price setting (%)b 0.47 0.54 0.47 0.44 0.42
Cost of timing choice (%)b 0.49 0.38 0.49 0.55 0.64

Wages Frequency of wage change (%) 7.81 6.98 8.34 9.99 13.05
Mean absolute wage change (%) 4.98 4.94 5.50 6.04 6.95
Skewness of wage changes 1.02 0.57 0.17 -0.04 -0.24
Kurtosis of wage changes 12.48 12.22 11.94 12.02 11.83
Standard deviation of (log) wages (x100) 3.55 3.52 3.52 3.53 3.55

% of wage changes > 0 34.35 54.43 70.62 78.52 85.48
% of abs wage changes < 0.025 27.12 30.36 25.17 20.73 15.39

Output losses due to wage stickiness (%)a, Θw 1.96 1.82 1.98 2.17 2.52
Cost θw∗ of decision errors (%)b 0.60 0.59 0.74 0.88 1.16
Cost of wage setting (%)b 0.94 0.99 0.94 0.89 0.83
Cost of timing choice (%)b 1.08 0.95 1.09 1.26 1.55

Total output losses relative to frictionless economyc, Θ 2.30 2.21 2.35 2.50 2.77

aOutput losses (Θp and Θw) differ from the sum of the following cost terms because output loss includes general
equilibrium effects.
bThe sum of the three cost terms in prices (wages) panel represents the gain accruing to a single firm (worker)
unconstrained by decision costs (κf = 0 or κw = 0).
cTotal output losses Θ differ from Θp + Θw because Θ includes change in labor effort.

that the absolute size of price adjustments has been quite stable in US CPI microdata since

1975, including the Great Inflation episode. Yet, due to state-dependence, the increase in the

size of price adjustments that our model generates is substantially smaller than what a Calvo

model would predict.

Nakamura et al. (2018) argued that the absolute size of price changes could be an observable

proxy for inefficient price dispersion, and hence for the costs of nominal rigidity and inflation.

They also showed that inefficient price dispersion is inversely related to the productivity measure

Āt defined in (37). Therefore, the misallocation term that appears in our decomposition (42)

measures the same concept—losses due to inefficient price dispersion—as a fraction of aggregate

consumption. Using the fact that
P fpj,t

P fpt
= Āfp

Aj,t
and that

∫ 1
0

(
Aj,t
Āfp

)ε−1
dj = 1, the misallocation
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term can be rewritten as:

Āfl − Āt
Āt

=

∫ (
Aj,t
Āfl

)ε−1
[(

Pj,tP
fl
t

P flj,tPt

)−ε
− 1

]
. (45)

Hence misallocation is zero when all firms are at their optimal prices (Pj,t = P flj,t) and the

aggregate price is at its flexible value (Pt = P flt ); it deviates from zero as individual or aggregate

prices deviate from their flexible levels.

In our baseline parameterization, misallocation relative to fully flexible prices is 1.82% (in

the table, this is the difference between Θp and the costs of price setting and timing). Misallo-

cation is minimized at zero inflation, falling to 1.77%, and it rises very gradually with inflation,

reaching 1.93% at 8% annual trend inflation. Thus, while absolute price and wage changes get

substantially larger with inflation in our simulations, the actual change in inefficient dispersion

is small. This points to the importance of state dependence: firms tend to adjust prices when

they get too far out of line, which is why the welfare costs of inflation are much more stable in

state-dependent models than they are in the Calvo framework. On the other hand, it also indi-

cates the relevance of substitution on the consumers’ side, which reduces the welfare impact of

inefficient price dispersion. The misallocation term is a welfare-based measure, taking account

of consumers’ ability to substitute across goods, with elasticity ε = 7, when some goods are

inefficiently priced.34

4.2.2 Trend inflation and monetary nonneutrality

The effects of trend inflation on the economy go beyond the steady state, also affecting dynamic

responses to shocks. Figure 6 compares the impulse responses of our estimated baseline model

to a 1% money supply shock (with monthly autocorrelation 0.8, as before) as trend inflation

varies. The largest real effects are obtained at 0% trend inflation, and these effects decrease

monotonically as trend inflation deviates from zero. Concretely, the half-life of the labour

response falls from 10 months at 0% trend inflation, to 8 months at the baseline 2%, and only 5

months at 8% trend inflation. The reduction in the real effects of monetary policy is due to the

lower persistence induced by more frequent price and wage adjustments, as shown in Table 5.

This is consistent with evidence of Ascari and Haber (2021) showing a quicker and less persistent

reaction of prices to a monetary shock when trend inflation is higher.

34. Likewise, the corresponding term in (43),

Z̄fw − Z̄t
Z̄t

= Z̄fw[Z̄−1 − (Z̄fw)−1] = Z̄fw
∫
Z−1
i,t

[(
Wi,t

Zi,tWt

)−εn
−

(
W fl
i,t

Zi,tW
fl
t

)−εn]
di,

measures losses in aggregate consumption due to wage dispersion. These losses are small, and hardly change
with trend inflation, from a minimum of -0.12% at zero inflation to a maximum of 0.14% at 8% inflation.
They are small because general equilibrium effects largely cancel out the partial equilibrium losses due to
errors. In general this term has an ambiguous sign, because consumption gains (losses) may be compensated
by leisure losses (gains).
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Figure 6: Impulse responses at different trend inflation rates in the baseline model.
Notes: Impulse responses to a 1 percent money supply shock (autocorrelation 0.8), starting from annual
trend inflation rates of -2% (blue), 0% (red), 2% (baseline case, yellow), 4% (purple) and 8% (green).

To further quantify how monetary transmission varies with trend inflation, we can compare

our model to the Calvo framework by fitting Calvo specifications for price and wage adjustments

that reproduce, as closely as possible, the state-dependent model’s output and inflation impulse

responses.35 The estimates are summarized in Table 6. The estimated Calvo probabilities

for the baseline case with 2% inflation are considerably higher than the corresponding average

frequencies of price and wage setting in our data, especially for wages. This is because, absent

the selection effect, the only way for the Calvo model to replicate the more rapid nominal

responses of a state-dependent model is by adjusting upward the exogenous probabilities of

price and wage resetting. As trend inflation increases from 0 to 8%, the IRF-matching Calvo

monthly adjustment probabilities increase from 11% to 26% for prices and from 22% to 48% for

wages. This slope (roughly 2 for prices, or 3 for wages) can also be viewed as an elasticity of the

hazard rate to the rate of price growth (one plus the inflation rate) of 11.2 for prices, and 10.1

for wages. These large elasticities highlight the relevance of the extensive margin of adjustment

in response to positive trend inflation, and hence the importance of state dependence versus the

“straitjacket” of the Calvo model.

Another way to quantify the effects of trend inflation on the model’s dynamics is to look at

the Phillips multiplier, defined by Barnichon and Mesters (2021) as the ratio of the cumulative

35. To do so, we search with csminwel for a combination of Calvo parameters that minimizes the squared distance
between the IRFs from the model with state dependent prices and wages, and the ones of the corresponding
Calvo model. We truncate the IRFs at 36 months, by which time both the inflation and consumption responses
are back to steady-state.
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Table 6: Best fitting Calvo models

Calvo Parameter

Inflation rate Prices Wages

0% 0.1110 0.2219
2% 0.1530 0.2972
4% 0.1833 0.3487
8% 0.2645 0.4752

inflation response to the cumulative hours response over a sufficiently long horizon, e.g. 48

months. We display the multiplier in Table 7 for different trend inflation rates and adjustment

costs scenarios. The “Baseline” column shows the Phillips multiplier corresponding to the

scenario presented in Figure 6. The multiplier is lowest at 0% trend inflation, meaning that real

effects are largest, as we discussed before.

Table 7: Phillips multipliers at different trend inflation rates and noise parameters

Trend Flexible Flexible Flexible Prices
inflation Baseline Prices Wages and Wages

-2% 0.229 0.225 0.572 1.071
0% 0.167 0.212 0.267 1.080
2% 0.239 0.309 0.414 1.156
4% 0.297 0.404 0.502 1.230
8% 0.446 0.665 0.614 1.335

When we make prices flexible, firms increase their adjustment frequency. Hence we see in

the “Flexible prices” column that the Phillips multiplier increases, except for the case of -2%

trend inflation, where it is roughly unchanged. This non-monotonicity in the multiplier is not

observed for wages; imposing wage flexibility increases the multiplier substantially at all the

trend inflation rates we consider. Again, the numbers suggest that wage rigidities matter more

than price rigidities for monetary non-neutrality; the increase in the multipliers (the reduction

in the real effects) is much greater when we make wages flexible than when we make prices

flexible, except at the highest inflation rate in the table. However, taken together with the

Calvo estimates from Table 6, these results suggest that wage rigidity matters not because

frictions are quantitatively larger for wages than for prices, but instead because wage stickiness

feeds through to price stickiness, by way of firms’ cost structure.

4.2.3 Flattening of the Phillips curve

The paper of Barnichon and Mesters (2021) is one of many that have explored the apparent

flattening of the Phillips curve in recent decades (see also Ball and Mazumder 2011 and Coibion

and Gorodnichenko 2015, among others). Papers by Benigno and Ricci (2011) and Lindé and

Trabandt (2018) have shown that asymmetric nominal rigidities can make the Phillips curve
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flatter at low inflation rates. While the adjustment costs in our model are entirely symmetric,

our model likewise implies a decrease in the slope of the Phillips curve as trend inflation falls.

Therefore, in this section, we quantify how much of the observed change in the curve’s slope can

be explained on the basis of state-dependent nominal adjustment.

Following Jorgensen and Lansing (2019), we take a traditional approach to evaluating this

question, by estimating reduced-form Phillips curves both in the data and in our model, driven

by money supply shocks.36 We use US data from the period 1980-2020, and estimate the

reduced-form relationship between the change in price inflation and the output gap. We split

the sample in two sub-periods: 1980:1-1999:4 and 2000:1-2019:4. The first period is characterized

by a higher inflation rate, with an average of 4.6%, while in the second period average inflation

decreases to 2%. The top panels of Figure 7 show the relationships between the change in

inflation and the output gap for the two periods. As previous literature has found, the observed

slope of the Phillips curve is higher in the period of higher inflation, between 1980 and 2000. To

quantify how much of this flattening of the Phillips curve can be generated by the changing non-

neutrality of our state-dependent model, we next simulate two scenarios with the observed trend

inflation rates. In particular, we solve the model at 4.6% and at 2% trend inflation, subject to

monetary policy shocks and then simulate 1000 monthly observations. Since the actual series are

at quarterly frequency, we transform our model-generated data which is at monthly frequency.

We then define the (one year) change in inflation as ît = it − it−4 where it is the (quarterly)

inflation rate. We define the output gap as ŷt = yt− ȳ where ȳ is the steady-state level of output

(in logs). We keep the last 80 quarterly observations from each simulated sample.37 Using these

transformed model-generated series, we run the same regression that we ran on the actual data.

The bottom panels of figure 7 show the outcome of this exercise.

Table 8: Slope of the Phillips curve. Data and Model

1980:1-1999:4 2000:1-2019:4 Change % Change

Data 0.3835 0.0114 -0.3721 -97.03
Model 0.3515 0.2050 -0.1464 -41.66

As shown in figure 7, the Phillips curve derived from simulated data is substantially flatter

in the second period, when annual trend inflation is 2.6 percentage points lower. Table 8 collects

the slopes of the Phillips curves for the two periods in the data and in the model. The slope of

the simulated Phillips curve falls by 42%, while in the data the corresponding decline is of 97%.

Thus, our state-dependent model explains almost half of the observed decline in the slope of

36. Our approach is limited to estimating conditional correlations between the change in inflation and the output
gap, treating the economy as if it were subject to money shocks only. However, the logic of our mechanism—
that price adjustment is sluggish when trend inflation is low—should be applicable to demand shocks in
general, implying a smaller inflationary response together with a larger real response.

37. We calibrate the size of the money growth shocks in our model such that we match the standard deviation of
inflation in each sample period.

32



-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Output gap

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
ha

ng
e 

in
 in

fla
tio

n

Phillips Curve 1980-2000. Data

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Output gap

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
ha

ng
e 

in
 in

fla
tio

n

Phillips Curve 2000-2020. Data

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Output gap

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
ha

ng
e 

in
 in

fla
tio

n

Phillips Curve 1980-2000. Model

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Output gap

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
ha

ng
e 

in
 in

fla
tio

n

Phillips Curve 2000-2020. Model

Figure 7: Phillips curves in the data and the model.
Source: FRED II (series CPILFESL, GDPPOT and GDPC1). The change in inflation is computed as ît = it−it−4,
where it = d log(CPILFESLt) and the output gap is ŷt = log(GDPC1t/GDPPOTt). See the main text for more
details on how to construct the model-generated series.

the Phillips curve as a response to this relatively modest change in trend inflation. Our model,

therefore, leaves room for other, complementary, explanations for a real or apparent flattening

of the Phillips curve. Prominent hypotheses include improved monetary policy (Roberts 2006;

McLeay and Tenreyro 2020), better anchoring of inflation expectations (Jorgensen and Lansing

2019; Barnichon and Mesters 2021), and increased competitive pressure related to technology

or globalization (Forbes 2019).

4.3 Limits to monetary stimulus

The variation in impulse responses as trend inflation changes is not the only non-linearity dis-

played by our model. As stressed by Ascari and Haber (2021) and Alvarez and Lippi (2014),

in models of state dependent pricing, the effects of monetary policy also vary dramatically with

the size of the shock.

Figure 8 shows that as money supply shocks become larger, their impact falls proportionally

less on consumption (and other real variables). The figure compares the cumulative responses

of consumption to one-time, permanent, uncorrelated shocks to the money supply varying from

zero to 10 log points. Under the baseline specification a small jump in the money supply causes

a persistent increase in consumption; the cumulative effect on consumption is 2.7% for a jump

of two log points in the money supply. However, the persistence of the real effects drops rapidly
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Figure 8: Comparing small and large money supply shocks.
Left : cumulative impulse responses of consumption to one-time increase in the money supply.
Right : change in adjustment frequency, on impact, for wages and prices.

with the size of the shock, so the cumulative real change is actually smaller for a money shock

of six log points than it is for a shock of four log points. The reason is that larger shocks give

firms and workers ever stronger incentives to adjust prices and wages immediately (stronger

selection and extensive margin effects). Thus, most of the nominal reaction occurs immediately,

making the real effects smaller. Indeed, for money supply shocks larger than 9 log points, the

real stimulus on impact shrinks, and the brief initial rise of the impulse-response is followed

by a prolonged slump in consumption and labour due to inflationary distortions, making the

cumulative impact on consumption negative.38

We can also decompose the total effect by looking at the FP and FW specifications.39 In

particular, it turns out that sticky wages are more important for non-neutrality for relatively

smaller money shocks, while sticky prices are more important for larger shocks. This is linked

to the behaviour of adjustment probabilities, which rise more steeply for wages than for prices,

and is ultimately related to the relative absolute size of wage and price changes.40

5 Conclusions

We have developed a DSGE model with state-dependent price and wage rigidity, combining

monopolistic competition in goods and labour (as in Erceg et al. 2000) with nominal rigidity due

to costly decision-making (as in Costain and Nakov 2019). Our heterogeneous-agents approach,

38. Alvarez and Lippi (2014) show that there are decreasing returns to monetary stimulus in state-dependent
pricing models, and that the peak effect occurs for a money shock that is roughly half the size of firms’
idiosyncratic shocks. This is consistent with our findings here: the peak effect in our baseline model is
achieved by a 3.2 log points money shock, while the standard deviation of firms’ idiosyncratic shocks is 5.7
log points.

39. Figure not shown but available upon request.

40. Recall that wage changes are estimated to be smaller than price changes in absolute value, consistent with
the targeted empirical histograms.
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with idiosyncratic shocks both to firms and to workers, allows us to fit our model to microdata

on price and wage adjustments, but also permits us to calculate the dynamic effects of monetary

policy shocks. Our model assumes that labour can be costlessly reallocated across firms at

any time, so our study should be understood as documenting the interactions of nominal price

stickiness with nominal wage stickiness, abstracting from matching frictions or any other forms

of labour specificity. Fitting the data requires convex disutility of labour, so that workers prefer

to vary their wages, as well as their hours, in response to shocks.

At a microeconomic level, we compare different calibrations to see how nominal rigidities

affect price and wage adjustment behaviour. We estimate the decision cost parameters and

productivity processes to match price and wage adjustment microdata; our estimates match

the empirical frequency of adjustment, and produce a histogram somewhat smoother than the

one observed in the data. If we instead reduce the level of decision costs, the adjustment

histograms take on a bimodal shape with strong, counterfactual spikes resembling an (S,s)

model. Allowing for a trend in idiosyncratic productivity over the life cycle implies that small

negative wage changes are relatively infrequent; this helps explain a pattern which is often

interpreted as evidence of downward nominal wage rigidity, in spite of the fact that there is no

inherent downward rigidity in our setup.

We quantify the overall output losses due to frictions in our model. In the baseline specifica-

tion they amount to about 2.35% of the output in a frictionless economy. We further decompose

the losses to highlight misallocation components related to inefficient price and wage dispersion,

and components that represent the costs of decision-making. Firms in our estimated model

spend less than one percent of revenues on decisions related to price setting, while workers de-

vote approximately two percent of their time to decisions about wage setting. Firms’ decision

costs are comparable to direct evidence, such as that of Zbaracki et al. (2004). The costs of mis-

allocation are non-trivial but are much smaller than a Calvo model would predict. Our results

suggest that the level of inefficient dispersion remains quite stable as trend inflation varies.

Regarding macroeconomic dynamics, a key conclusion from our framework is that wage

stickiness is a stronger source of monetary non-neutrality than price stickiness. The version of

our model with wage stickiness only produces almost as much non-neutrality as the version with

wage and price frictions together. In contrast, without wage stickiness, our model has greatly

reduced real effects of money shocks, and implies a strong, counterfactual rise in the real wage

after a monetary stimulus. The reason for the importance of wages is not so much that they are

inherently stickier, but that wage stickiness feeds through to marginal costs and thereby reduces

the incentive for price changes after a monetary policy shock.

We then use our calibrated model to explore how trend inflation affects the slope of the

Phillips curve. We find that decreased trend inflation makes nominal adjustment and short-

run inflation less reactive to monetary shocks, enhancing their real effects and thus flattening

the Phillips curve. Quantitatively, our model is able to explain almost half of the observed

drop in the slope of the US Phillips curve between 1980-2000 and 2000-2020. In contrast to

previous literature, the relationship between the Phillips curve slope and the trend inflation rate
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is unrelated to any downward asymmetry in adjustment costs. Instead, in our context it arises

naturally as a consequence of state-dependent changes in adjustment frequencies.

Finally, we find that monetary policy has a number of other highly nonlinear effects in our

framework. Larger money shocks cause adjustment probabilities to rise, so inflation responds

more quickly and the real stimulus is proportionally smaller. Indeed, the absolute size of the

cumulative real impact is maximized by a rise of roughly 3.2 log points in the money supply,

with a decreasing real stimulus thereafter. Money shocks larger than 9 log points instead have

a mostly contractionary real impact in the model.
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Appendix

A Decomposing frictions

As (36) shows, aggregate consumption in our economy is Ct = ĀtNt, where Nt = N tot
t − µ− τ

is total effective labour used for production, and Āt is the labour productivity measure defined

in (37). This general definition of Āt is valid for economies with flexible prices and/or flexible

wages, as special cases.

A.1 Flexible prices

The first-order condition for a firm without price frictions implies that it will set the price

P fpj,t =
(

ε
ε−1

Wt
Aj,t

)
, for any aggregate wage level Wt, given its productivity Aj,t. So if all firms

can flexibly set prices, the aggregate price level will be

P fpt =
ε

ε− 1

W fp
t

Āfp
. (46)

Labour productivity, which we will call Āfp, must satisfy

(Āfp)−1 =

∫ (
P flj,t
P fl

)−ε
A−1
j,t dj =

∫ (
Āfl

Aj,t

)−ε
Aε−1
j,t dj

Rearranging, we see that Āfp is constant if the productivity distribution is time-invariant:

Āfp =

(∫
Aε−1
j,t dj

)1/(ε−1)

, (47)

This result holds regardless of the degree of wage-setting frictions.

Given effective labour N tot
t , we conclude that under flexible prices, aggregate consumption

will be Cfpt = ĀfpN tot
t . So given N tot, the losses in aggregate consumption attributable to price

stickiness alone are given by (42):

Θp
t =

Cfpt − Ct
Ct

=

(
Āfp − Āt

Āt

)
N tot

Nt
+

µt
Nt

+
τt
Nt

The first term in (42) captures the consumption losses due to inefficient price dispersion. The

second and third terms capture the output losses from the fact that part of the labour input in

the baseline economy must be devoted to decision-making rather than production.

The misallocation term
(
Āfp−Āt
Āt

)
Ntot

Nt
combines partial equilibrium losses due to errors with

general equilibrium effects. It is therefore also interesting to separate out the partial equilibrium

component. In particular, in the table we report the representative firm’s losses θp∗ from pricing
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errors, as a fraction of aggregate consumption. These are:

θp∗ =

∫ 1

0


(
P fpj,t
Pt

)1−ε

−
(
Pj,t
Pt

)1−ε
− A−1

j,t

Wt

Pt

(P fpj,t
Pt

)−ε
−
(
Pj,t
Pt

)−ε dj. (48)

The error costs θp∗, and the decision costs N−1
t µt and N−1

t τt, are all reported in Tables 4 and 5.

The sum of these three components is the firm’s total loss caused by frictions. In other words,

this sum represents the (per capita) gains that would accrue to a single firm that is capable of

making decisions without control costs, holding fixed the rest of the economy.

A.2 Flexible wages

In general, in our frictional model, the aggregate relation between raw labour time and effective

labour is given by (38). If instead there are no wage setting frictions, then for the same level of

labour time Htot we would obtain Nfw
t units of effective labour, defined by:

Htot
t = Nfw

t

∫ Zεn−1
i,t

(
W fw
i,t

W fw
t

)−εn
di

 = Nfw
t (Z̄fwt )−1. (49)

Hence the ratio of effective labour to labour time changes from Z̄t to Z̄fwt when wages are

flexible. For a given level of Htot
t , the change in effective labour supply directly attributable to

wage stickiness is given by (43):

Θw
t =

Cfwt − Ct
Ct

=
Nfw
t −N tot

t

N tot
t

=
Z̄fwt − Z̄t

Z̄t
+

µwt
Ht

+
τwt
Ht

To interpret this decomposition, consider an individual worker with productivity Zi,t who

can set the wage flexibly, taking as given any arbitrary aggregate conditions. That worker will

choose:

W ∗i,t =

[
χ

(
εn

εn − 1

)(
Pt

u′(Ct)

)] 1
1+ζεn

[
W εn
t N tot

t Zεn−1
i,t

] ζ
1+ζεn (50)

It can then be shown that, regardless of aggregate conditions (Pt, N
tot
t , Ct), if no workers are

subject to wage frictions, then the individual-to-aggregate wage ratio will be:

W fw
i,t

W fw
t

= Z
ζ(εn−1)
1+ζεn
i,t (Z†)

1
1+ζεn , (51)

where

Z† ≡

(∫
Z

(1+ζ)
(
εn−1
1+ζεn

)
i,t

) 1+ζεn
εn−1

. (52)

Interestingly, this result holds independently of whether prices are flexible or sticky. Notice that
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it implies that Z̄fw is a constant if the productivity distribution is time invariant:

Z̄fw = (Z†)
εn

1+ζεn

(∫
Z

εn−1
1+ζεn
i,t di

)−1

. (53)

As in the case of firms, the misallocation term Z̄fw−Z̄t
Z̄t

combines partial equilibrium and gen-

eral equilibrium effects. As before, it is interesting to calculate the partial equilibrium component

that represents the cost of errors in wage setting (converted from utility units to consumption

units).We call these error costs θw∗, and report them in Tables 4 and 5. Summing these error

costs with the decision costs H−1
t µwt and H−1

t τwt , also reported in the tables, gives the utility

gains (per capita, evaluated in consumption units) that would accrue to a single worker capable

of making decisions without control costs, holding fixed the rest of the economy.

A.3 Flexible general equilibrium

If neither workers nor firms face any nominal frictions, the steady-state general equilibrium of

our economy can be computed analytically. The nominal price level is irrelevant; it can be

normalized to P flt = 1. For any aggregate price level, the nominal wage W fl
t is given by (46).

Aggregate consumption is Cflt = ĀflNfl
t , where Āfl is given by (47). Integrating W fl

i,t/Zi,t

across i, where W fl
it is given by (50), we obtain an equation for the aggregate wage in a flexible

economy. Substituting in for Cflt and W fl
t , the only unknown is the level of effective labour Nfl

t

in frictionless general equilibrium:(
ε− 1

ε

)
ĀflP flt = χ

(
εn

εn − 1

)
P flt (Nfl

t )ζ(
ĀflNfl

t

)−γ (Z†)−1, (54)

Inverting (54) we obtain Nfl
t , so we can calculate Hfl

t from (53):

Nfl
t =

[(
1

χ

)(
ε− 1

ε

)(
εn − 1

εn

)
(Āfl)1−γZ†

] 1
γ+ζ

, (55)

Overall, aggregate consumption in the baseline economy is

Ct = ĀtNt = Āt(Z̄tHt − µt − τt) = ĀtZ̄tHt = ĀtZ̄tH
tot
t − ĀtZ̄t(µwt + τwt )− Āt(µt + τt),

where Ht ≡ Ht − Z̄−1
t (µt + τt). In the frictionless economy,

Cflt = ĀflNfl
t = ĀflZ̄flt H

fl
t .

43



Hence the the overall loss relative to baseline consumption is given by (44):

Θ =
Cflt − Ct

Ct
=

Āflt Z̄
fl
t H

fl
t − Āt

[
Z̄t
(
Htot
t − µwt − τwt

)
− µt − τt

]
Āflt Z̄

fl
t Ht

(56)

=
ĀflZ̄flt − ĀtZ̄t

ĀtZ̄t
+

µwt + τwt
Ht

+
µt + τt
Nt

+
Āflt Z̄

fl
t (Hfl

t −H)− ĀtZ̄t(Htot
t −H)

ĀtZ̄tHt

(57)

The first term incorporates the misallocation terms seen earlier in Θp and Θw (plus their in-

teractions), combining partial and general equilibrium effects. The final term includes general

equilibrium labour supply effects.

B Detrending

To describe the dynamics of the distributions of firms and workers, it helps to first remove

the model’s nominal trend. We assume benchmark distributions for nominal prices and wages,

ηPt (P̃ ) and ηWt (W̃ ), that take the form of time-invariant distributions ηp(p̃) and ηw(w̃) over real

prices and wages. This assumption implies that the firms’ and workers’ decision problems are

homogeneous of degree one in nominal prices, so their Bellman equations can be stated in real

rather than nominal terms.

Let Ωt be a nominal aggregate state variable for this economy at time t. This means that

there are functions P and W which define the nominal price and wage levels in terms of Ωt:

Pt = P (Ωt), (58)

Wt = W (Ωt). (59)

We will define real variables by dividing by the aggregate price level, and we will treat all

idiosyncratic real variables in logs. The real model requires notation for several real idiosyncratic

quantities: pj,t ≡ lnPj,t−lnP (Ωt), p̃j,t ≡ ln P̃j,t−lnP (Ωt), aj,t ≡ lnAj,t, wi,t ≡ lnWi,t−lnP (Ωt),

w̃i,t ≡ ln W̃i,t − lnP (Ωt), zi,t ≡ lnZi,t, and ξi,t ≡ x(Wi,t, Zi,t,Ωt)/P (Ωt).

Assuming time-invariant benchmark distributions of real prices and wages places restrictions

on the benchmark distributions of nominal variables. For any P̃ ≡ P (Ωt)e
p̃, we must have

ηPt (P̃ ) = P̃−1ηp(p̃). Likewise, given W̃ ≡ P (Ωt)e
w̃, we must have ηWt (W̃ ) = W̃−1ηw(w̃).41

Now let Ξt be the real variable constructed by replacing each nominal state variable in Ωt by

its log real counterpart, and likewise replacing any distribution of nominal idiosyncratic state

variables in Ωt by the corresponding distribution of log real states. Then we may conjecture

that Ξt is a valid real aggregate state variable for the model at time t. If so, there must exist

functions m, w, and i that determine the real money supply, the real aggregate wage, and the

41. To see this, when we say that there is an unchanging distribution of p̃, we mean that cdfPt (P̃ ) = cdfp(p̃),

evaluated at the point P̃ = Pte
p̃. Using the chain rule, this implies

∂cdfPt
∂P

(P̃ )Pte
p̃ = ∂cdfp

∂p
(p̃). Then since

ηPt (P̃ ) ≡ ∂cdfPt
∂P

(P̃ ) and ηp(p̃) ≡ ∂cdfp

∂p
(p̃) we obtain ηPt (P̃ ) = P̃−1ηp(p̃).

44



inflation rate in terms of Ξ:

mt ≡ Mt/P (Ωt) = m(Ξt), (60)

wt ≡ W (Ωt)/P (Ωt) = w(Ξt), (61)

it ≡ lnP (Ωt)− lnP (Ωt−1) = i(Ξt,Ξt−1). (62)

Likewise, aggregate consumption and labor must be functions of the real state, so c(Ξt) =

Ct ≡ C(Ωt) and n(Ξt) = Nt ≡ N(Ωt), and firm-specific labor demand can be written as

h(w, z,Ξt) ≡ H(P (Ωt)e
w, ez,Ωt) = ez(εn−1)n(Ξt)w(Ξt)

εne−εnw. (63)

Now, given the real state Ξ, the firms’ Bellman equations can be expressed in terms of real

value functions v and ve that satisfy the identities

v(p, a,Ξ) ≡ V (P (Ω)ep, ea,Ω)

P (Ω)
, (64)

ve(p, a,Ξ) ≡ V e(P (Ω)ep, ea,Ω)

P (Ω)
= βE

{
u′(c(Ξt+1))

u′(c(Ξt))
v(p− it+1, a

′,Ξt+1)

∣∣∣∣ a,Ξt} . (65)

We see in (65) that, absent any nominal price adjustment, a log real price p at time t becomes

p− it+1 at time t+ 1. The real version of Bellman equation (13) is:

v(p, a,Ξt) = max
λ,πp(p̃)

(
ep − w(Ξt)

ea

)
c(Ξt)e

−εp + (1− λ)ve(p, a,Ξt)+

+ λ

∫
πp(p̃)ve(p̃, a,Ξt)dp̃ − λκfw(Ξt)

∫
πp(p̃) ln

(
πp(p̃)

ηp(p̃)

)
dp̃ −

− κfw(Ξt)

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
s.t.

∫
πp(p̃)dp̃ = 1. (66)

The worker’s Bellman equation (24) can be detrended in the same manner. To do so, we

postulate real value functions l and le that satisfy the identities

l(w, z,Ξ) ≡ L(P (Ω)ew, ez,Ω)

P (Ω)
, (67)

le(w, z,Ξ) ≡ Le(P (Ω)ew, ez,Ω)

P (Ω)
= βE

{
u′(c(Ξt+1))

u′(c(Ξt))
l(w − it+1, z

′,Ξt+1)|z,Ξt
}
. (68)
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The worker’s real Bellman equation can now be written as follows:

l(w, z,Ξt) = max
τw,µw,ρ,πw(w̃)

ewh(w, z,Ξt)−
X(h(w, z,Ξt) + τw + µw)

u′(c(Ξt))

+(1− ρ)let (w, z,Ξt) + ρ

∫
πw(w̃)le(w̃, z,Ξt)dw̃ (69)

s.t.

∫
πw(w̃)dw̃ = 1,

ρκw

∫
πw(w̃) ln

(
πw(w̃)

ηw(w̃)

)
dw̃ = τw,

κw

[
ρ ln

(
ρ

ρ̄

)
+ (1− ρ) ln

(
1− ρ
1− ρ̄

)]
= µw. (70)

Equation (70) implies the following distribution of wages:

πwt (w̃|w, z) ≡
ηw(w̃) exp

(
let (w̃,w)
κwξt(w,z)

)
∫
ηw(w′) exp

(
let (w

′,z)
κwξt(w,z)

)
dw′

, (71)

where

ξt(w, z) ≡
X ′(ht(w, z) + τwt (w, z) + µwt (w, z))

u′(Ct)
(72)

is the worker’s marginal disutility of time spent working, expressed in units of consumption

goods. Similarly, the first-order condition for ρ implies the following adjustment probability:

ρt(w, z) =
ρ̄ exp

(
l̃t(w,z)

κwξt(w,z)

)
ρ̄ exp

(
l̃t(w,z)

κwξt(w,z)

)
+ (1− ρ̄) exp

(
let (w,z)

κwξt(w,z)

) . (73)

Thus, the noise in both the timing and wage-setting decisions is proportional to the worker’s

marginal disutility of labor.

For purposes of backwards induction, to calculate the worker’s decision in any state (w, z,Ξ),

it suffices to find the unique value of ξt(w, z) that solves (72). The worker’s decision time costs

µwt (w, z) and τwt (w, z) can be calculated using (71) and (73); their sum is strictly decreasing in

ξ. Since marginal disutility increases strictly with total time use (and since ht(w, z) does not

depend on ξ), the right-hand side of (72) is a strictly decreasing function of ξ. Therefore (72)

can be solved by bisection to give a unique solution ξt(w, z) ≥ 0 in any state (w, z,Ξt).

C Distributional dynamics

The distributions of firms’ and workers’ state variables evolve over time as firms and workers

respond to idiosyncratic and aggregate shocks. We begin by describing firms’ dynamics.

Pj,t is the nominal price at which firm j produces in period t, prior to adjustment; this

may differ from its price P̃j,t at the end of t, when price adjustments are realized. But instead

of tracking nominal prices, it is simpler to focus on log real prices pj,t. Therefore, we define
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Ψt(pj,t, aj,t) as the real distribution at the beginning of t, when production takes place, and

Ψ̃t(p̃j,t, aj,t) as the real distribution at the end of t. Also, we use lower-case letters to repre-

sent the joint densities associated with these distributions, namely ψt(pj,t, aj,t) and ψ̃t(p̃j,t, aj,t),

respectively.42

Two stochastic processes drive the dynamics of the distribution. First, there is the Markov

process for firm-specific log productivity, which we can write in terms of the following c.d.f.:

S(a′|a) = prob(aj,t ≤ a′|aj,t−1 = a), (74)

or in terms of the corresponding density function:

s(a′|a) =
∂

∂a′
S(a′|a). (75)

Thus, suppose that the density of real prices and log productivities at the end of period t− 1 is

ψ̃t−1(p̃, a). Holding fixed a firm’s nominal price, its real log price is changed by inflation, from

p̃i,t−1 to pi,t ≡ p̃i,t−1− it at the beginning of t. At the same time, productivities a will be shifted

by the Markov transitions s. Therefore the density of real log prices and log productivities at

the beginning of t is given by

ψt
(
p̃− it, a′

)
=

∫
s(a′|a)ψ̃t−1(p̃, a)da, (76)

and hence the cumulative distribution at the beginning of t, in real terms, is

Ψt(p, a
′) =

∫ p ∫ a′ (∫
s(b|a)ψ̃t−1 (q + it, a) da

)
db dq. (77)

The definition of the aggregate price level (1) implies that the following identity must hold for

distribution ψt(p, a) at all times:∫ ∫
e(1−ε)pψt(p, a) da dp = 1. (78)

The second stochastic process that determines the dynamics is the process of real price

updates, which we have defined in terms of a conditional density of logit form in (8). A firm

with real log price p and log productivity a at the beginning of period t adjusts its price with

probability λ
(
dt(p,a)
κfwt

)
, where

dt(p, a) ≡ ṽt(a)− vet (p, a).

Upon adjustment, its new real log price is distributed according to πt(p̃|a). Therefore, if the

42. Our notation here assumes that all densities are well-defined on a continuous support, but we do not actually
impose this assumption on the model. With slightly more sophisticated notation we could allow explicitly for
distributions with mass points, or with discrete support.
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density of firms at the beginning of t is ψt(p, a), the density at the end of t is given by

ψ̃t(p̃, a) =

(
1− λ

(
dt(p̃, a)

κfwt

))
ψt(p̃, a) +

∫
λ

(
dt(p, a)

κfwt

)
πt(p̃|a)ψt(p, a)dp.

The cumulative distribution at the end of t is simply given by integrating up this density:

Ψ̃t(p, a) =

∫ p̃ ∫ a

ψ̃t(q, b)db dq.

The dynamics of wages and worker productivities are analogous, except that an individual

worker may die and be replaced by a new worker with probability 1 − βS per period. Let

Ψw
t (wi,t, zi,t) be the distribution of real log prices and log worker productivities at the beginning

of the period, when production takes place, and let Ψ̃s
t (w̃i,t, zi,t) be the corresponding distri-

bution of surviving workers at the end of the period. We write the corresponding densities as

ψwt (wi,t, zi,t) and ψ̃st (w̃i,t, zi,t), respectively.

Now, consider a worker with real log wage w and log productivity z at the beginning of

period t. She adjusts her wage with probability ρ
(

dwt (w,z)
κwξt(w,z)

)
, where

dwt (w, z) ≡ l̃t(w, z)− let (w, z).

Upon adjustment, her new real log wage is distributed according to πwt (w̃|w, z). Therefore, if

the density of workers at the beginning of t is ψwt (w, z), the density at the end of t is:

ψ̃wt (w̃, z) =

(
1− ρ

(
dwt (w̃, z)

κwξt(w̃, z)

))
ψwt (w̃, z) +

∫
ρ

(
dwt (w, z)

κwξt(w, z)

)
πwt (w̃|w, z)ψwt (w, z)dw.

The cumulative distribution at the end of t integrates up this density:

Ψ̃w
t (w̃, z) =

∫ w̃ ∫ z

ψt(q, b)db dq.

The aggregate wage definition (20) implies that ψwt (w, z) always satisfies the following identity:

∫ ∫
e(1−εn)(w−z)ψwt (w, z) dz dw = w1−εn

t . (79)

A worker alive in period t survives to period t + 1 with probability βS . Her productivity,

conditional on survival, is driven by the Markov process Sz:

Sz(z′|z) = prob(zi,t+1 ≤ z′|zi,t = z), (80)

with the following density function:

sz(z′|z) =
∂

∂z′
S(z′|z).

Meanwhile, holding fixed a worker’s nominal wage, her real log wage is changed by inflation,
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from w̃i,t at the end of t, to wi,t+1 ≡ w̃i,t − it+1. Therefore the density of real log wages and log

worker productivities among surviving workers at the beginning of t+ 1 is:

ψst+1

(
w̃ − it+1, z

′) =

∫
sz(z′|z)ψ̃wt (w̃, z)dz. (81)

The cumulative distribution at the beginning of t integrates up (81) and adds on the component

of new-born workers, with distribution Ψ0
t :

Ψw
t+1(w, z) = βS

∫ w ∫ z (∫
sz(b|y)ψ̃wt (q + it+1, y) dy

)
db dq + (1− βS)Ψ0

t+1(w, z).

Considering birth and death matters here because it permits us to impose an upward trend

in productivity over the course of an individual’s working life: a worker typically ends her career

at a wage higher than the one she started with. This trend is important for matching the

distribution of wage adjustments. We denote the distribution of wages and productivity for

newborn workers at time t by Ψ0
t . For simplicity, we assume that a newborn worker’s wage is

the one she would choose, conditional on her productivity, if wage setting were frictionless. With

this simplifying assumption, we avoid modelling an initial decision-making state at birth. Since

our analysis focuses on wage changes, ignoring the level of the initial wage, this assumption has

a negligible impact on the results.

D Additional figures
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Figure D.1: Histograms of price and wage changes at different trend inflation rates
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