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Abstract

We model retail price stickiness as the result of costly, error-prone decision-making.

Under our assumed cost function for the precision of choice, the timing of price adjustments

and the prices firms set are both logit random variables. Errors in the prices firms set help

explain micro facts related to the size of price changes, the behavior of adjustment hazards,

and the variability of prices and costs. Errors in adjustment timing increase the real effects

of monetary shocks, by reducing the “selection effect”. Allowing for both types of errors

also helps explain how trend inflation affects price adjustment.
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1 INTRODUCTION1

Economists seeking to explain price stickiness have often appealed to small fixed costs of nom-

inal price changes, commonly called “menu costs” (Barro 1972). In theory, even small menu

costs might impede price adjustment sufficiently to alter aggregate dynamics in a significant way

(Mankiw 1985). But quantitatively, Golosov and Lucas (2007) showed that fixed menu costs do

little to generate aggregate price stickiness in a macroeconomic model with realistically large

firm-specific shocks. The dynamics of their model are quite close to monetary neutrality, so

fixed menu costs seem unpromising to explain the nontrivial real effects of monetary shocks

observed in macroeconomic data (e.g. Christiano, Eichenbaum, and Evans, 1999). Moreover,

detailed microeconomic evidence suggests that menu costs, as usually interpreted, are only a

small fraction of the overall costs of price setting (Zbaracki et al. 2004). A much larger part

of the costs of price adjustment consists of managerial costs related to information processing

and decision making. This raises the question: can costs of decision-making explain micro and

macro evidence on price dynamics better than fixed menu costs do? And how exactly might

these costs be modeled?

This paper proposes a simple model of price stickiness based on costly choice, estimates

two of its free parameters, and shows by simulation that this suffices for consistency with a

wide variety of microeconomic and macroeconomic evidence. Two key considerations moti-

vate our setup. First, if choice is costly, then decisions are likely to be error-prone. This makes

it natural to treat decision outcomes as random variables, instead of treating actions as deter-

ministic. Second, it is natural to assume that greater precision is costly — for example, by

taking more time to consider more relevant variables, a decision maker might increase the prob-

ability of selecting the best feasible option. Motivated by these points, we adopt the “control

cost” approach from game theory (see, for example, van Damme 1991). Formally, instead of

modeling the choice of an optimal action directly, this approach defines the decision problem
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as the choice of a probability distribution over possible actions.2 The problem is constrained by

a cost function under which more precise decisions (more concentrated distributions) are more

expensive. Making any given decision in a perfectly precise way is feasible, but is usually not

worth the cost. Therefore actions are random variables correlated with fundamentals, instead of

being deterministic functions of fundamentals.

In the context of dynamic price setting, a firm faces choices on two key margins: when to

change the price of a product it sells, and what new price to set. In contrast to existing game

theoretic applications of control costs, we allow for errors on both these margins. The resulting

distribution of errors depends on the functional form of the control costs. It is especially conve-

nient to measure precision in terms of entropy, defining costs as a linear function of the relative

entropy between the distribution of actions and an exogenous default distribution. Under this

cost function, the distribution of actions is a multinomial logit. This implies that the probability

of taking any given action increases smoothly with the value of that action, compared with other

feasible actions. General equilibrium then takes the form of a logit equilibrium:3 each decision

maker plays a logit in which the values of actions are evaluated assuming that others’ choices

are logits too. The decision costs backed out from our benchmark calibration do not seem ex-

cessive: firms spend roughly 0.9% of revenue on decision-making, and in addition incur a loss

of roughly 0.5% of revenue due to suboptimal choices.

Many papers have shown that an entropy-based cost function can “microfound” a logit dis-

tribution of actions (Stahl 1990; Marsili 1999; Mattsson and Weibull 2002; Bono and Wolpert

2009; Matejka and McKay 2015).4 But previous studies have typically focused on decisions

taken at known, exogenously given points in time. We extend the logit model to apply to con-

texts of intermittent adjustment where a key decision is when changes should occur, showing

that if the cost of choosing a time-varying adjustment hazard depends linearly on its relative

entropy, relative to a constant hazard, then the chosen adjustment hazard takes the form of a

binary logit. In addition to the noise parameter that governs the accuracy of choice in a stan-
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dard logit model, our dynamic setup also features a parameter related to the speed of choice.

The inclusion of the speed parameter ensures that our model has a well-defined continuous-time

limit, and thus clarifies how parameters must be adjusted if the frequency of the data or of the

simulation is changed.

While both the size and the timing of price adjustments are plausibly subject to error, we

run simulations that shut down one type of mistakes or the other in order to see what each

one contributes empirically. We find that errors in the size of price changes help explain some

“puzzling” aspects of retail price microdata. In particular, unlike a fixed menu cost model, our

setup implies that many large and small price changes coexist (Klenow and Kryvstov 2008;

Midrigan 2011; Klenow and Malin 2010, “Fact 7”). It implies that the adjustment hazard is

nearly flat, but slightly decreasing in the first few months, as found by empirical work that

controls for heterogeneity in hazards (Nakamura and Steinsson 2008, “Fact 5”; Klenow and

Malin 2010, “Fact 10”). Likewise, we find that the size of price changes is largely independent

of the time since last adjustment (Klenow and Malin 2010, “Fact 10”). Many alternative models,

including the Calvo (1983) model, instead imply that adjustments get larger, quickly, as the

time since the previous change increases. Also, we find that the highest and lowest prices are

more likely to have been set recently than prices near the center of the distribution (Campbell

and Eden 2014). Finally, prices are more volatile than costs, as documented by Eichenbaum,

Jaimovich, and Rebelo (2011), whereas the opposite is true in both the Calvo and fixed menu

cost models.

While errors in the size of price adjustments help reproduce patterns in microdata, they do

not by themselves yield strong real effects of monetary policy. Indeed, in our estimate of the

specification with pricing errors only, the real effects are just as small as those in a fixed menu

cost model. But as long as we allow for mistakes in the timing of price adjustments, monetary

nonneutrality increases substantially. The cause of the nonneutrality is the same as in the Calvo

framework: by weakening the correlation between the value of adjustment and the probability
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of adjustment, the “selection effect” highlighted by Caplin and Spulber (1987) and Golosov

and Lucas (2007) is reduced. Thus the adjustment process combines state-dependent and time-

dependent features (consistent with empirical evidence of Klenow and Kryvtsov, 2008), and the

degree of nonneutrality lies roughly halfway between that of the fixed menu cost specification

and that of the Calvo model. In contrast with the Calvo setup, our model also does a good job

in reproducing the effects of trend inflation on price adjustment— particularly the effects on

the typical size of price changes, and on the fraction of changes that are increases, which are

margins where the fixed menu cost model performs poorly. The presence of both types of errors

is crucial for our model’s fit to these effects of trend inflation.

1.1 Related literature

A wave of recent research has documented intermittent price adjustment in new databases from

the retail sector, including work by Klenow and Kryvtsov (2008), Nakamura and Steinsson

(2008), Klenow and Malin (2010), and Eichenbaum, Jaimovich, and Rebelo (2011). In re-

sponse, macroeconomists have built numerical models of pricing under fixed or stochastic menu

costs with both aggregate and firm-specific shocks, fitting them to microdata and then study-

ing their macroeconomic implications; key papers include Golosov and Lucas (2007); Kehoe

and Midrigan (2015); Álvarez, Beraja, González, and Neumeyer (2013); and Dotsey, King, and

Wolman (2013). There have also been numerous proposals of other mechanisms, beyond the

simple menu cost framework, that may better match microdata. Midrigan (2011) proposes that

the firm may pay a single fixed cost to change the prices of several products. Matejka (2016)

and Stevens (2015) show that when information flow is costly to the firm, retail prices may

fluctuate between a few discrete values, generating some price changes that look like temporary

“sales”, a phenomenon we will not address here. Álvarez, Lippi, and Paciello (2011) and De-

mery (2012) assume there is a fixed cost to obtain information as well as a fixed cost to adjust

the price; like our own framework, these “menu cost and observation cost” models match many
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empirical facts while requiring just two free parameters to model the adjustment process.

Our paper contrasts with other recent work by exploring a different mechanism for nominal

rigidity: errors derived from costly decision-making.5,6 While allowing for errors may be un-

usual in macroeconomics, it is central to microeconometrics (though econometric “error terms”

are not always interpreted as mistakes). In representative-agent macro models, ignoring errors

is not necessarily inconsistent with microeconometrics, since to a first approximation, errors

might cancel out. But when fitting a heterogeneous-agent macroeconomic model to the full

distribution of adjustments in microdata, that argument does not apply: if there are any errors

at all, they are likely to increase the variance of observed adjustments, so a calibration without

errors would (for example) mistakenly overestimate the variance of the underlying exogenous

shocks. In this sense, the microdata-based calibration strategies in many recent state-dependent

pricing papers may be further removed from standard practice in micro- and macroeconomics

than our model is.

The logit equilibrium framework has been influential in experimental game theory, because

allowing for errors helps explain play in many contexts where Nash equilibrium performs poorly

(Anderson, Goeree, and Holt 2002), but we are unaware of any dynamic general equilibrium

macroeconomic models based on logit equilibrium, prior to our own work.7 While McKelvey

and Palfrey defined logit equilibrium both for normal form (1995) and extensive form (1998)

games, we had to extend their framework in order to model errors in the timing of price changes.

Our setup applies the same logic to timing decisions that it applies on the pricing margin. In a

static context, logit choice is derived by penalizing the entropy of the random choice, relative

to a fixed default distribution. Likewise, we derive a weighted binary logit for adjustment

timing by penalizing the entropy of the random time of adjustment, relative to a constant default

hazard. Our hazard has the same functional form derived by Woodford (2008), though his

microfoundations differ: he assumes firms face a constraint on information flow, plus a fixed

cost of purchasing full information.
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Woodford’s (2008, 2009) papers form part of the “rational inattention” literature initiated by

Sims (2003), where economic agents face costs associated with information flow. Our approach

is closely related, but distinct: we assume the firm has all the information it needs to make an op-

timal decision, but that doing the required calculation precisely is costly.8 For example, greater

precision might require managers to consider more payoff-relevant variables, or higher-order

terms, which might take more time. Some recent rational inattention papers provide further

motivation for our approach. Khaw, Stevens, and Woodford (2017) present laboratory evi-

dence for decision costs above and beyond the costs of obtaining information: players in their

experiment reset the control variable less frequently and more noisily than Bayesian-rational

decision-makers would, given the information they have. Steiner, Stewart, and Matejka (2017)

show that a dynamic rational inattention problem is equivalent to a control cost model with an

optimally-chosen default distribution. While our paper instead sets the default distribution in

the control cost function exogenously, this has an important practical advantage: it dramatically

reduces the dimensionality of our calculations. This is because choices in a rational inatten-

tion model are conditioned on a prior (typically a high-dimensional object), whereas in our

setup, choices are just conditioned on the true state of the world. This makes dynamic general

equilibrium modeling tractable under the control cost approach, as this paper will show.9

2 MODEL

This discrete-time model embeds near-rational price adjustment in an otherwise standard New

Keynesian general equilibrium framework based on Golosov and Lucas (2007). Retail prices

are updated intermittently by a continuum of monopolistically competitive firms. There is also

a representative household, and a monetary authority that sets an exogenous growth process

for the nominal money supply. All agents act under full information; what this means in our

near-rational context will be discussed further below.
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2.1 Household

The household’s period utility function is 1
1−γC

1−γ
t −χNt+ν ln(Mt/Pt), where Ct is consump-

tion, Nt is labor supply, and Mt/Pt is real money balances. Utility is discounted by factor β

per period. Consumption is a CES aggregate of differentiated products Cit, with elasticity of

substitution ε:

Ct =

{∫ 1

0

C
ε−1
ε

it di

} ε
ε−1

. (1)

The household’s nominal period budget constraint is

∫ 1

0

PitCitdi+Mt +R−1
t Bt = WtNt +Mt−1 +Bt−1 + TMt + TDt , (2)

where
∫ 1

0
PitCitdi is total nominal consumption. Bt represents nominal bond holdings, with

interest rate Rt − 1; TMt is a lump sum transfer from the central bank, and TDt is a dividend

payment from the firms.

Households choose {Cit, Nt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to

the budget constraint (2). Optimal consumption across the differentiated goods implies

Cit = (Pit/Pt)
−εCt, (3)

so nominal spending can be written as PtCt =
∫ 1

0
PitCitdi under the following price index:

Pt ≡
{∫ 1

0

Pit
1−εdi

} 1
1−ε

. (4)
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The household’s first-order conditions for labor supply, consumption, and money use are:

χ = C−γt Wt/Pt, (5)

R−1
t = βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
, (6)

1− νPt

MtC
−γ
t

= βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
. (7)

2.2 Monopolistic firms

Each firm i maximizes profits by setting, and (intermittently) resetting, the nominal price Pit

of its output Yit. It operates the constant returns technology Yit = AitNit, where Nit is labor,

and Ait ≡ exp(ait) is an idiosyncratic productivity process. Log productivity ait follows a

time-invariant Markov process on a bounded set, ait ∈ Γa ⊆ [a, a], with i.i.d. innovations

across firms, so ait is correlated with ai,t−1, but is uncorrelated with other firms’ shocks. Firm

i is a monopolistic competitor that faces the demand curve Yit = CtP
ε
t P
−ε
it . Each firm i is

infinitesimal, so it assumes that its own price Pit has no effect on the aggregate price level Pt.

It hires in a competitive labor market at wage rate Wt; its nominal profits per period are:

Uit = PitYit −WtNit =

(
Pit −

Wt

Ait

)
CtP

ε
t P
−ε
it ≡ Ptut(pit, ait). (8)

In this equation, pit ≡ ln(Pit/Pt) represents the firm’s log real price; the notation ut(pit, ait)

indicates real profits per period, as a function of log real price and log productivity.10,11 Firms

are owned by the household, so they discount nominal income between times t and t+ 1 by the

factor β PtC
−γ
t+1

Pt+1C
−γ
t

, consistent with the household’s marginal rate of substitution.

Having described the firm’s technology and objective function, we next describe its control

variable. We assume that the firm’s only control is its nominal price Pit.12 It may change this

control at any time t, setting a new nominal price Pit ∈ ΓPt , where ΓPt is a bounded set further

described below. Alternatively, if it takes no action at t, its nominal price remains unchanged,
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at P̃it ≡ Pi,t−1 (tildes indicate prices at the beginning of any period t; end-of-period prices,

after any adjustments have occurred, are denoted without tildes). The fact that the firm may

deliberately choose a new price Pit ∈ ΓPt , or simply leave it unchanged at Pit = P̃it, effectively

expands its alternatives to the augmented choice set ΓPt (P̃it), defined as

ΓPt (P̃it) ≡ ΓPt ∪ {P̃it} ≡ ΓPt ∪ {Pi,t−1}. (9)

Since the scalar Pit is the firm’s only control, the quantity it sells is determined by demand:

given its price, the firm must fulfill all resulting demand, resulting in gross profits (8).

2.2.1 Price adjustment when choice is costly

We abstract from any cost associated with the act of resetting the price, per se.13 Instead, we

assume that precise decisions are costly, adopting the “control cost” approach from game theory

(see van Damme, 1991, Chapter 4). A key feature of this approach is that decisions are modeled

indirectly, “as if” the decision-maker were selecting a probability distribution over the feasible

set, instead of choosing one of its elements. The decision problem incorporates a cost function

that increases with precision: concentrating greater probability on a smaller subset of possible

choices increases costs.14 While control cost models have typically analyzed costly decisions

taken at an exogenously fixed point in time, we will also incorporate a cost of choosing when to

make a decision.15

To operationalize this approach, we must define the cost function, which also requires us

to choose a definition of precision. Since the time of managers or other employees is a major

input to decisions, we define costs in units of time. We define precision in terms of relative

entropy, also known as Kullback-Leibler divergence, which measures the deviation between

one probability distribution and another. If π1 and π2 are the cumulative distribution functions

of two different probability distributions defined on the same set, then the Kullback-Leibler
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divergence D(π1||π2) of π1 relative to π2 is16

D(π1||π2) ≡
∫

ln

(
π′1(x)

π′2(x)

)
dπ1(x). (10)

Following Stahl (1990) and Mattsson and Weibull (2002), we assume that the decision cost is

proportional to the Kullback-Leibler divergence of the chosen probability distribution, relative

to a default distribution:

ASSUMPTION 1. The firm’s time cost of allocating the probability distribution Π† over the

choice set ΓPt (P̃ ) is κD(Π†||Θ†t(·|P̃ )), where κ ≥ 0 is a constant, and Θ†t(·|P̃ ) is a default

distribution that conditions on the previous price P̃ .

Assumption 1 implies that there is a default decision Π† = Θ†t(·|P̃ ) that has zero cost. In

order to apply any other probability distribution over the choice set, the firm must pay a positive

cost, which we interpret as time devoted to cognitive effort.17 Here the factor κ represents the

marginal cost of entropy reduction, in units of labor time; a higher κ implies that it is more

costly to choose the price accurately.

Obviously our model’s behavior depends on our assumptions about the default probabilities

Θ†t that apply in the absence of cognitive effort. We will impose two key properties on Θ†t . First,

we assume default behavior is highly random, consistent with the idea that making decisions

more precise requires cognitive effort. Second, we impose long-run monetary neutrality, so that

our model can be analyzed in real terms after removing a nominal trend. Indeed, even though

firms set prices in nominal terms, it is convenient to jump directly to a real description of the

firm’s problem.18 So rather than defining decision costs in terms of distributions Π† and Θ†

over nominal prices, we work with distributions π† and θ† that assign the same probabilities to

the corresponding sets of real prices.19 Relative entropy is unchanged by this transformation:

D(π†||θ†) = D(Π†||Θ†). Given these preliminaries, we can now define the default distribution,

in real terms, conditional on the beginning-of-period real price p̃ (again, tildes distinguish prices
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at the start of the period).

ASSUMPTION 2. (a) When adjusting, the firm considers a fixed, bounded set Γp of log real

prices.

(b) Conditional on adjustment, the firm’s default distribution θ†(·|p̃) assigns a uniform dis-

tribution θ over Γp.

(c) The firm’s default distribution θ†(·|p̃) associates a constant probability θ0 to nonadjust-

ment.

Thus, whenever it updates its price, the firm chooses from the same fixed, exogenous set of

real prices Γp, which we will define wide enough that the real prices preferred at the extremal

values of productivity, a and a, lie strictly inside Γp.20 But rather than adjusting, the firm may

instead leave its nominal price unchanged, implying the real price p̃it ≡ ln(P̃it/Pt). Thus, as in

(9), the firm effectively chooses over the augmented real choice set Γp(p̃it), defined as

Γp(p̃it) ≡ Γp ∪ {p̃it} ≡ Γp ∪ {ln(Pi,t−1/Pt)}. (11)

Together, Assumptions 2(b) and 2(c) imply that the default distribution can be written as

θ†(p|p̃) = (1− θ0)θ(p) + θ01(p̃ ≤ p), (12)

where θ is the c.d.f. of a uniform distribution on Γp. The assumption of a uniform default

distribution is not crucial; what matters qualitatively is just that large, random errors occur if

the firm spends no time on its price decision.21

FIGURE 1 ABOUT HERE

To describe the firm’s behavior under this cost structure, it helps to distinguish the firm’s

value function at the beginning of twhen it still has the option to adjust, o(p̃it, ait), from its value
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vt(pit, ait) when production occurs at the end of t, after decisions are made (see the timeline).

Following the control cost paradigm, we write the firm’s problem “as if” it were choosing

a probability distribution over prices, instead of simply choosing a price. It maximizes its

expected value, net of computational costs, which are multiplied by the real wage wt to express

all terms in consumption units. Thus, for any bounded choice set Γ, let ∆(Γ) be the set of

increasing functions f satisfying f(min Γ) ≥ 0. Given the beginning-of-t real price p̃, the firm

chooses a distribution from ∆(Γp(p̃)):

ot(p̃, a) = max
π†∈∆(Γp(p̃))

∫
vt(p, a)dπ†(p)− κwtD

(
π†||θ†(·|p̃)

)
s.t.

∫
dπ†(p) = 1, (13)

vt(p, a) = ut(p, a) + Et

{
β
C−γt+1

C−γt
ot+1 (p− it,t+1, a

′)

∣∣∣∣ a} . (14)

The constraint in (13) states that the chosen function must be a c.d.f. (it must integrate to one).

Note that since the firm is a nominal price setter, its log real price decreases by the inflation rate

it,t+1 ≡ ln (Pt+1/Pt) between t and t+ 1.22

The decision costs κwtD(π†||θ†) are a convex function of the chosen probabilities π†, the

expectation
∫
vt(p, a)dπ†(p) is a linear function of π†, and the simplex on which the probabili-

ties integrate to one is a convex set.23 Hence (13) maximizes a concave function over a convex

set, which implies that a unique solution exists at time t, given the time t + 1 value function

ot+1(p̃t+1, at+1).24 To characterize the probabilities that solve (13), it suffices to define a La-

grangian and take first-order conditions point-by-point at each possible time-t price p. At any p

where the default probability θ† is differentiable, the distribution π† must satisfy:25

vt(p, a)− κwt
[
ln

(
dπ†t (p|p̃,a)/dp
dθ†(p|p̃)/dp

)
+ 1

]
− µt(p̃, a) = 0 (15)

where µt(p̃, a) is the multiplier on the constraint in (13) when the current log real price is p̃, log

productivity is a, and the real aggregate state is Ξt. Condition (15) implies that the probability
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density at price p is proportional to an exponential function of vt(p, a); applying the restriction

that probabilities must integrate to one across all p, we conclude that they take the form of a

weighted logit. Thus, the probability that the firm selects a real price less than or equal to p is

π†t(p|a, p̃) ≡

∫ p
exp

(
vt(p′,a)
κwt

)
dθ†(p′|p̃)∫

Γp(p̃)
exp

(
vt(p′,a)
κwt

)
dθ†(p′|p̃)

. (16)

Moreover, exponentiating (15) and plugging it into the objective function of (13), we obtain

an analytical formula for the value function:

ot(p̃, a) = κwt ln

(∫
Γp(p̃)

exp

(
vt(p, a)

κwt

)
dθ†(p|p̃)

)
. (17)

This solution gives the value of deciding whether or not to adjust the current price, net of

decision costs.

2.2.2 Decomposing the timing and pricing decisions

While we have defined the firm’s problem as a single decision over the augmented choice set

Γp(p̃), it decomposes naturally into two separate decisions, related to timing and pricing. First,

given the beginning-of-period real price p̃, should the firm adjust its price? Second, if it chooses

to adjust, what new price should it set? Each of these decisions can be described separately as

a costly, error-prone choice, and the resulting policy functions are easier to interpret than (16).

First, consider the timing decision. The value of leaving the beginning-of-t price unchanged

is vt(p̃, a); let ṽt(a) represent the value of choosing a new price, conditional on current pro-

ductivity a. Then, following the control cost approach, we can consider the binary decision to

adjust the price (with probability λt) or not adjust (with probability 1 − λt) subject to the time

costs κλD((λt, 1− λt)||(λ̄, 1− λ̄)), where we have defined λ̄ ≡ 1− θ0 to represent the default
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probability of adjusting the price. The choice problem can be written as

ot(p̃, a) = max
λt

λtṽt(a) + (1− λt)vt(p̃, a)− κλwt
[
λt ln

(
λt
λ̄

)
+ (1− λt) ln

(
1− λt
1− λ̄

)]
.

(18)

Like (13), problem (18) has a concave objective, since it subtracts convex costs from a function

that is otherwise linear in λt, so the first-order condition suffices for a maximum of (18). As

before, we obtain a weighted logit:26

λt(p̃, a) ≡
λ̄ exp

(
ṽt(a)
κλwt

)
λ̄ exp

(
ṽt(a)
κλwt

)
+ (1− λ̄) exp

(
vt(p̃,a)
κλwt

) ∈ [0, 1]. (19)

The weight parameter λ̄ is related to the speed of choice. In particular, it represents the update

probability in one discrete time period when the firm is indifferent between adjusting or not:

λt(p̃, a) = λ̄ if vt(p̃, a) = ṽt(a).

Next, consider the pricing decision. If the firm decides to adjust, it chooses a price from the

set Γp, subject to decision costs, as follows:

ṽt(a) = max
π∈∆(Γp)

∫
vt(p, a)dπ(p)− κπwtD (π||θ) s.t.

∫
dπ(p) = 1 . (20)

Again, as in (13), we are maximizing a concave function on a convex set. Taking first-order

conditions, we find a weighted logit analogous to (16):27

πt(p|a) ≡

∫ p
exp

(
vt(p′,a)
κπwt

)
dθ(p′)∫

Γp
exp

(
vt(p′,a)
κπwt

)
dθ(p′)

(21)

The parameter κπ in the logit function can be interpreted as the degree of noise in the price

decision; in the limit as κπ → 0, (21) converges to the policy function under full rationality, so

that the optimal price is chosen with probability one.
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In the particular case κλ = κπ ≡ κ, the policy functions (19) and (21) are equivalent to (16).

Concretely, wherever the densities of πt and π†t exist, they satisfy dπ†t (p|p̃,a)

dp
= λt(p̃, a)dπt(p̃,a)

dp
.

The probability that a firm leaves its nominal price unchanged is given by 1 − λt(p̃, a), corre-

sponding to a point mass in the distribution π†t at the unadjusted price p̃.

But note that in (18)-(21) we generalize our setup to differentiate between the noise param-

eters in the timing (κλ) and pricing (κπ) decisions. This generalization allows us to study costs

and errors in the pricing decision separately from costs and errors in the timing decision. Going

forward, we will compare a version of our model with “errors in pricing” (EiP) only, setting

κπ > 0 but κλ = 0, and a version with “errors in timing” (EiT) only, setting κπ = 0 but κλ > 0.

These two frictions have very different effects, but both, jointly, help explain price dynamics.

2.2.3 Discussion

Some interpretive comments are useful here. First, although we write the decision problem “as

if” the firm chooses a probability distribution over prices, this should not be taken literally. A

more realistic interpretation is that the firm chooses how much time to dedicate to its decision,

and thereby achieves more or less precision in its price choice. Thus, defining the problem as

a choice of a mixed strategy is just a way to incorporate errors into the model. And writing

it as an optimization problem just serves to discipline the errors, implying that more costly

mistakes are less likely. Features of the model that we do take seriously include (a) choice is

costly in terms of time and other resources; (b) therefore decision-makers sometimes fail to

take the action that would otherwise be optimal; (c) ceteris paribus, more valuable actions are

more likely than less valuable ones; (d) in a retail pricing context, errors affect both the timing

of price adjustment, and the actual price chosen; and therefore (e) firms will try to balance the

marginal benefits and costs of precision across these two margins. Quantitatively, we will see

that this framework yields a remarkably successful model of nominal rigidity, even though we

impose strong restrictions on the form of the control cost function.
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Second, we reiterate that “rational inattention” and the control costs framework address

different “stages” of the choice process: obtaining and using information.28 Rational inattention

imposes a cost function that depends on the amount of information processed while making

decisions. Instead, we assume that the firm has enough information so that choosing the optimal

action is feasible, but that actually inferring the best action from its information is costly. Thus,

while choices in a rational inattention model are conditioned on a prior, here problem (13)

conditions instead on the firm’s true state variables (its lagged price p̃, its productivity a, and

the aggregate state Ξ). So when the true value vt(p, a) of each possible price p appears in (13),

this does not mean the firm “knows” the true values, but only that it has enough information

to make calculating vt(p, a) feasible.29 By devoting more time to its decision, the firm could

take more factors into consideration (incorporating additional variables into its calculations), or

study those factors more carefully (checking its calculations, or considering higher-order terms).

But given our assumed cost function, calculating vt(p, a) to full precision is not worthwhile, so

the firm prefers to conserve managerial time by tolerating some imprecision in its choices.

2.3 Distributional dynamics

As firms respond to productivity shocks, managing their prices according to (19) and (21), the

distribution of prices and productivities evolves over time. Recall that p̃it refers to firm i’s log

real price at the beginning of t, prior to adjustment; this may of course differ from the log real

price pit at which it produces, since it may reset its nominal price before production. Therefore

we will distinguish the beginning-of-t distribution of prices and productivity, Ψ̃t(p̃it, ait), from

the distribution at the time of production, Ψt(pit, ait).

Two stochastic processes drive the distributional dynamics. First, there is the Markov pro-

cess for firm-specific productivity, which we can write in terms of the following c.d.f.:

S(a′|a) = prob(ai,t+1 ≤ a′|ait = a). (22)
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Thus, suppose the c.d.f. of log real prices and productivities at the end of t − 1 is Ψt−1(p, a).

This distribution is then hit by the productivity process (22). Moreover, fixing a firm’s nominal

price, its log real price is shifted by inflation, from pi,t−1 to p̃it ≡ pi,t−1 − it−1,t, where it−1,t ≡

ln(Pt/Pt−1). Thus the distribution of log real prices and productivities at the start of t is:30

Ψ̃t (p̃, a′) =

∫
S(a′|a) daΨt−1(p̃+ it−1,t, a). (23)

The second stochastic process that drives the distributions is the price updating process. A

firm with log real price p̃ and log productivity a at the start of t adjusts its price with probability

λt(p̃, a), given by (19), and upon adjustment its new log real price is conditionally distributed

according to πt(p|a), given by (21). Therefore, if the beginning-of-t distribution of firm states

is Ψ̃t(p̃, a), the distribution at the end of t is

Ψt(p, a) =

∫ p

(1− λt(p̃, a)) dp̃Ψ̃t(p̃, a) +

∫
λt(p̃, a)πt(p|a) dp̃Ψ̃t(p̃, a). (24)

2.4 Monetary policy and general equilibrium

The nominal money supply is shocked by an AR(1) process z,31

zt = φzzt−1 + εzt , (25)

where 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z). Here zt is the time t rate of money growth:

Mt/Mt−1 ≡ µt = µ exp(zt). (26)

Seigniorage revenues are paid to the household as a lump sum transfer TMt , and the government

budget is balanced each period, so thatMt = Mt−1+TMt . Bond market clearing impliesBt = 0.

We have now discussed all the ingredients of general equilibrium. We will define equilib-
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rium in real terms, without reference to the nominal price level Pt, which is nonstationary under

the money supply rule (26). To do so, we must define a real aggregate state Ξt that summarizes

all predetermined variables needed to calculate equilibrium objects at t. Note that a firm’s real

beginning-of-period price p̃it ≡ ln(Pit/Pt) is not predetermined at t, since it depends on the

aggregate price level Pt, which is endogenous at t. Thus the beginning-of-t real distribution Ψ̃t

is likewise not predetermined at t, and cannot form part of of the time-t real state variable Ξt.

Instead, we will construct an equilibrium in terms of the real state Ξt ≡ (zt,Ψt−1), which is

predetermined at t since it depends only on the lagged distribution Ψt−1.

Recall that time subscripts on aggregate variables denote dependence on the aggregate state

Ξt; for example, we write consumption as Ct ≡ C(Ξt), and the end-of-t value function as

vt(p, a) ≡ v(p, a,Ξt). Calculating general equilibrium requires us to find value functions vt,

ot, and ṽt that satisfy (14), (18), and (20). These value functions are associated with policy

functions λt and πt that satisfy (19) and (21). These policy functions drive the dynamics of the

distributions Ψ̃t and Ψt according to (23) and (24). Note in particular that if the functions λt

and πt are known, then (23) and (24) can be used to calculate Ψt from Ψt−1, which is the key

to updating the state Ξt.

Besides these functions, general equilibrium also involves several scalar processes that must

obey the household’s first-order conditions. Given money growth (26), real money demand

mt ≡Mt/Pt, the real wage wt ≡ Wt/Pt, and consumption Ct must satisfy:

µ exp(zt − it−1,t) =
mt

mt−1

, (27)

wtC
−γ
t = χ, (28)

1− ν

mtC
−γ
t

= βEt

(
C−γt+1

it,t+1C
−γ
t

)
. (29)

Although the nominal price level never appears in the real equilibrium equation system, the

inflation rate it−1,t ≡ ln(Pt/Pt−1) does. Inflation must satisfy (4), which defines the aggregate
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price level, and reduces to the following identity in real terms:

∫ ∫
exp((1− ε)p) dpdaΨt(p, a) = 1. (30)

This gives us enough equations to determine the value functions, policy functions, and distri-

butions, as well as the scalars mt, wt, Ct, and it−1,t. A solution to these equations constitutes a

real general equilibrium of the economy. This requires a high-dimensional calculation, because

the aggregate state Ξt includes the distribution of firms’ individual state variables. We compute

the model using the algorithm of Reiter (2009), as described in Online Appendix A.

Note that computing general equilibrium does not require us to calculate labor, because of

our linear disutility assumption. Labor supply is perfectly elastic, adjusting for consistency with

consumption and the real wage, so it can be calculated from goods market clearing:

Nt −Kλ
t −Kπ

t =

∫ 1

0

Cit
Ait

di = Ct

∫ ∫
exp(−εp− a) dp̃daΨt(p, a) ≡ ∆tCt, (31)

whereKλ
t is total time devoted to deciding whether to adjust prices, andKπ

t is total time devoted

to choosing which price to set by firms that adjust. These quantities are given by

Kπ
t ≡ κπ

∫ ∫
λt(p̃, a)

(∫
p∈Γp

ln π(p)dpπ(p)− ln ū

)
dp̃daΨ̃t(p̃, a)

Kλ
t ≡ κλ

∫ ∫ (
λt(p̃, a) ln

λt(p̃, a)

λ̄
+ (1− λt(p̃, a)) ln

1− λt(p̃, a)

1− λ̄

)
dp̃daΨ̃t(p̃, a)

Equation (31) also defines a measure of price dispersion,

∆t ≡
∫ ∫

exp(−εp− a) dpdaΨt(p, a) (32)

weighted to allow for heterogeneous productivity. As in Yun (2005), an increase in ∆t decreases

the goods produced per unit of labor, rather like a negative aggregate productivity shock.
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3 RESULTS

We now describe the model calibration and report simulation results, documenting steady state

micro implications for price adjustments, and macro implications for monetary policy shocks

and changes in trend inflation. The simulations are performed at monthly frequency, and all

data and model statistics are monthly unless stated otherwise.

To better understand our model’s behavior, we will also decompose it to look separately at

the two margins of error: mistakes in prices, and mistakes in timing. We report a special case

that allows for errors in the size of price changes, but not in their timing, imposing κλ = 0 but

allowing κπ > 0; this is labelled “errors-in-prices” (EiP).32 In the EiP version, a firm will adjust

its nominal price at time t if and only if the value of adjustment, ṽt(a), exceeds the value vt(p̃, a)

of maintaining its current price p̃. At the opposite extreme, we also consider a case with errors

in the timing of price adjustments, but not in their size, imposing κπ = 0 but allowing κλ > 0;

this case is labelled “errors-in-timing” (EiT). The version that nests both types of errors, which

imposes κπ = κλ ≡ κ > 0, is labelled “nested”.

Likewise, for the sake of comparison, we will also report a Calvo (1983) specification and

a fixed menu cost (FMC) model. Whenever we refer to the “main model” or the “benchmark

model”, we mean the nested specification.

3.1 Parameters

The key parameters of the decision process are the rate and noise parameters λ̄ and κ. We esti-

mate these parameters to match two steady-state features of retail pricing data: the average rate

of adjustment, and the histogram of nonzero log price adjustments. For the estimates we use the

Dominick’s supermarket dataset described in Midrigan (2011), after removal of price changes

related to “sales”, and aggregating weekly adjustment rates to monthly rates for comparability

with some of the other data sources we consider. Our reason for ignoring sales is that recent lit-
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erature has found that monetary nonneutrality depends primarily on the frequency of “regular”

or “non-sale” price changes (see for example Eichenbaum et al. 2011; Guimaraes and Sheedy

2011; or Kehoe and Midrigan 2015).

More precisely, let h be a vector of length #h representing the probabilities of nonzero log

price adjustments in a histogram with #h fixed bins.33 We choose the adjustment parameters λ̄

and κ (or κ only in the EiP version) to minimize the following distance criterion:

distance =
√

#h ||λmodel − λdata||+ ||hmodel − hdata|| (33)

where || • || represents the Euclidean norm, λmodel and λdata represent the average frequency

of price adjustment in the simulated model and in the data, and hmodel and hdata are the vectors

of bin probabilities for nonzero price adjustments in the model and the data.34 The nonzero

adjustments in the histogram hdata are “regular” price changes from the Dominick’s dataset.

The adjustment frequency λdata = 10.2% represents the unweighted mean weekly adjustment

hazard in the same data, rescaled to monthly units. Clearly these features of the data are infor-

mative about the two parameters, since λ̄ will shift the adjustment hazard and κ will spread out

the distribution of price changes.

The rest of the parameterization is less crucial for our purposes, so we adopt utility pa-

rameters from Golosov and Lucas (2007), including the discount factor, β = 1.04−1/12; the

coefficient of relative risk aversion on consumption, γ = 2; and the elasticity of substitution in

the consumption aggregator, ε = 7. Likewise, we set the marginal disutility of labor to χ = 6,

and the coefficient on the utility of money is ν = 1.

We assume productivity is AR(1) in logs:

lnAit = ρ lnAit−1 + εat , (34)

where εat is a mean-zero, normal, iid shock. For numerical purposes, (34) is approximated
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by a finite Markov chain, following the Tauchen method. We set ρ following Blundell and

Bond (2000), who estimate an annual autocorrelation of 0.565 in a panel of US manufacturing

companies from 1982 to 1989; this implies approximately ρ = 0.95 at monthly frequency. The

variance of log productivity is σ2
a = (1−ρ2)−1σ2

ε, where σ2
ε is the variance of the innovation εat .

We set σa = 0.06, which is the standard deviation of “reference costs” estimated by Eichenbaum

et al. (2011). Our Markov chain allows for four standard deviations of productivity, so in the

simulations a ≡ lnA lies in [a, a] ≡ [−0.24, 0.24]. We compare productivity to “reference

costs” rather than “weekly costs” because this is more closely comparable to the pricing data

we consider, which exclude sales. The rate of money growth is set to match the 2% annual

inflation rate observed in the Dominick’s dataset.

The width of the uniform default distribution θ in the decision cost function (see Assumption

2) is also a free parameter of our setup, but it is not a crucial one. We assume the support of

θ stretches 25% beyond the range of real prices that would be chosen if pricing were perfectly

frictionless; that is, θ is uniform on
[
ln
(
εw
ε−1

)
− 1.25a, ln

(
εw
ε−1

)
− 1.25a

]
. Online Appendix C

shows that our results are robust to changing the support of θ.35 We have also run robustness

exercises that replace the uniform default θ with a truncated normal having the same standard

deviation, but there is little change in the results. Also, like the cost shock, real prices in our

simulations are represented on a finite grid. In our reported simulations the step sizes in the

price and productivity grids are the same; since actual price changes are typically much larger

than this, we find that making the price grid finer has a negligible effect on the results.

TABLE 1 ABOUT HERE

Parameter estimates for all the specifications we compare are reported in Table 1.36 The EiP

specification has only one free parameter: the pricing noise κπ. The errors-in-timing model has

two free parameters: the rate parameter λ̄, and the timing noise κλ. The nested model features

the same two free parameters, but the noise parameter applies both to the timing and pricing

decisions (κπ = κλ ≡ κ).37 Overall we will see (Table 2) that our estimates imply a low noise
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level, causing only modest revenue losses. The rate parameter λ̄ is estimated to be less than

the observed adjustment frequency in the errors-in-timing specification, but is twice as high

as the observed adjustment frequency in the main nested model. The combination of a high

underlying adjustment rate, together with a low noise parameter, indicates that our benchmark

model is consistent with a high degree of rationality.

3.2 Policy functions

The steady state policy functions of the main model are illustrated in Figure 2. The first panel

illustrates the distribution of reset prices conditional on productivity, π(p|a); the axes show

prices and costs (inverse productivity), expressed in log deviations from their unconditional

means. As expected, the mean price chosen increases roughly one-for-one with cost, but the

smooth bell-shape of the distribution conditional on any given a reflects the presence of errors.

If we instead eliminate pricing errors by considering the limit κπ → 0 (the EiT model), then the

bell-shaped price distribution collapses to a sharp peak that places all the probability mass on

the conditionally-optimal price.

Similarly, the top right panel shows the probability λ(p̃, a) of price adjustment conditional

on beginning-of-period price and productivity, which looks rather like a vertical reflection of

the probability surface π(p|a). Near (but not exactly on) the 45o-line, the adjustment prob-

ability reaches a (strictly positive) minimum; moving away from this minimum, it increases

smoothly towards one. Thus, the prices p that the firm is most likely to choose, conditional

on log productivity a, are also those that it is least likely to alter, conditional on the same a.

Again, it is instructive to consider how the policy function changes if we eliminate errors. If

we eliminate timing errors by considering the limit κλ → 0 (the EiP model), then the smoothly

state-dependent adjustment hazard collapses to a pair of (S,s) bands. That is, when κλ = 0,

the firm adjusts its price with probability one if and only if the current price lies sufficiently far

from the conditional optimum; otherwise it adjusts with probability zero.38
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FIGURE 2 ABOUT HERE

The bottom panels of Figure 2 plot the same policies in greater detail, by slicing through

the three-dimensional policy functions at each point a on the grid of possible log productivities;

the lowest productivity (a = −0.24) is highlighted with stars, while the highest productivity

(a = 0.24) is highlighted with squares. For ease of comparison, each slice is centered around

the 45o line of the upper panels, so the variable on the horizontal axis is p− ln
(
εw
ε−1

)
+a, which

is the price as a log deviation from its flexible-price optimum. These two-dimensional slices

make it easier to see the size of the errors and the strength of the selection effect in equilibrium.

The bottom left panel shows that at the minimum cost level (squares), prices vary by roughly

±5% around their optimal value. At the highest costs (stars), errors are on the order of ±10%.

This reflects the fact that high costs imply a high optimal price, so the firm sells at low volume;

hence pricing errors have a smaller impact on profits, so the firm tolerates larger errors. We also

see that the mode of the low (high) cost curve lies to the right (left) of zero; in other words, the

preferred price is not exactly on the 45o line of the upper panels. This occurs because a firm

with nominal rigidities and autoregressive shocks must set prices “conservatively”, responding

slightly less than proportionally to costs. When costs are unusually low (high), the firm expects

them to rise (fall), so it prefers a higher (lower) price than it would if it expected to adjust every

period.

Likewise, the lower right panel illustrates the selection effect. We see that with low costs

(squares), the monthly hazard rate reaches a minimum of 3% when the price is 4% above the

45o line. The hazard rate rises steeply away from this minimum; indeed, selection is strong

here compared with the evidence of Campbell and Eden (2014, Figure 3) or Eichenbaum et al.

(2011, Figs. 8-10). In contrast, with high costs (stars) the hazard rate is flatter overall, reflecting

a weaker selection effect when the volume of sales is lower. In other words, just as prices are

optimally less accurate when costs are high, the selection effect is also weaker (timing is less

accurate) when costs are high, because the profits at stake are lower. The asymmetry in the
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hazard function (and the price distribution) when costs are high (stars) is a related effect. An

excessively high price, leading to low sales, is a less costly error than an excessively low price

(implying high sales at a cheap price). Therefore the hazard function is steeper on the left, as

prices fall below their target, than it is on the right, as prices exceed their target.

3.3 Distribution of price adjustments

Table 2 documents the steady state distributions of price adjustments in the EiT, EiP, and nested

specifications defined above, as well as the FMC and Calvo models, and compares them to the

Dominick’s data. Figure 3 makes the same comparison graphically, showing the histograms of

nonzero log price changes from the model simulations and the corresponding histogram from

the data. The vector of bin frequencies for the 81 bars in these histograms is the object that

enters the second term of the distance criterion (33) used to estimate our models.

TABLE 2 ABOUT HERE

The results demonstrate the potential of timing and pricing errors to spread out the distribu-

tion of price changes and thereby better match the empirical histogram. All five model versions

match the 10.2% monthly adjustment frequency observed in the data. But with only one free

parameter, the EiP model then lacks an additional degree of freedom to fit the typical size of

price changes. The EiP estimate has very low noise (κπ = 0.008), resulting in behavior that is

quite close to full rationality. The implied distribution of price changes thus resembles the FMC

case, with two sharp spikes representing increases or decreases occurring near a pair of (S,s)

bands. Pricing errors spread out the spikes slightly in the EiP model, so there is some variation

in the size of price increases, and in the size of price decreases. But this variation is less than

we observe in the Dominick’s data; price changes in the EiP and FMC models are too small on

average, and there is little mass in the tails of the distribution.

Since the errors-in-timing model has two free parameters, it might be expected to fit both
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the frequency and size of adjustments. But neither λ̄ nor κλ acts to spread out the distribution

in a way that fits the data; the tails of the distribution of adjustments drop off very steeply in the

EiT simulation. This contrasts with our Calvo simulation, which shows a tall spike of near-zero

price adjustments (71% of changes are smaller than 5% in absolute value), but also has fatter

tails than EiT. The difference between these two specifications relates to state dependence in

the adjustment hazard. Prices are unlikely to drift far from their target levels in the EiT model,

since the adjustment hazard increases sharply as the value of adjustment rises, but the Calvo

adjustment hazard is always a constant 10.2% per month, so the price occasionally drifts far

from its target, resulting in a large change.

FIGURE 3 ABOUT HERE

In contrast, the coexistence of timing and pricing errors in the nested model helps it fit both

the frequency and the size of adjustments in the Dominicks’s data. Very small price changes

may occur in two main ways: firms may correctly choose a small adjustment when they mistak-

enly thought an adjustment was urgent; or they may mistakenly calculate that they only require

a small change when in fact they urgently need a large one.39,40 The very largest changes in the

distribution are likely to reflect mistaken overcompensation to a failure to adjust to a series of

large cost shocks— that is, a pricing error reinforcing a timing error.

Together, these effects generate a wide, fat-tailed distribution that matches both the typical

frequency and the typical size of price adjustments. Thus the main model is fairly consistent

with the mean absolute change, the standard deviation of the adjustments, the fraction of small

changes, and even the kurtosis of the data. (Midrigan, 2011, instead imposes a leptokurtic shock

process directly.) Thus, while the restriction κπ = 0 that defines the EiT specification strongly

constrains its ability to match the data, the restriction κπ = κλ that we impose on the nested

model seems largely consistent with the evidence.

Looking at the fat tails in Figure 3, it might seem that firms in our setup often make large

mistakes. But Figure 4 shows that mistakes are rarely costly. It shows the distribution of losses
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d(p, a) ≡ ṽ(a) − v(p, a) from nonadjustment under the benchmark specification, expressed as

a percentage of average monthly revenue, both at the beginning and at the end of the period.

The distribution of losses is strongly skewed out to the right: losses of up to 8% of revenue are

visible in the histogram, but most of the mass is concentrated at the left, with a mode at negative

7%. In other words, the firms at the left end of this distribution strictly prefer not adjusting,

because adjustment would imply paying a decision cost, and would also imply a risk of setting

the wrong price (this latter phenomenon is what we call “precautionary price stickiness” in

Costain and Nakov, 2015A). Adjustment eliminates some, but not all, of the largest losses, so

the beginning-of-period distribution (φ̃(p̃, a), shown as a shaded area) shifts slightly leftward

(φ(p, a), shown as a solid line) before production and transactions occur. Adjustment fails to

eliminate the right tail of the distribution for two reasons: some firms that would potentially

benefit from adjustment fail to adjust, and some that do adjust make costly errors.

FIGURE 4 ABOUT HERE

Another measure of the losses due to costly choice is reported at the end of Table 2. The

last line of the table shows the average monthly gain from eliminating all decision costs and

frictions, as a fraction of average monthly revenues.41 The previous two lines decompose the

losses, showing the costs Kπ of choosing prices and the costs Kλ of deciding the timing of

adjustment. The difference between the total loss in the last line of the table, and the sum

Kπ +Kλ, represents the cost of errors. The largest total loss occurs in the nested model, where

choosing prices costs firms half of one percent of revenues, choosing the timing of adjustment

costs one-third of one percent of revenues, and errors eat up another half a percent of revenues.42

In a case study of an industrial firm, Zbaracki et al. (2004) find that decision and negotiation

costs associated with price adjustment eat up roughly 1.2% of revenues; this is larger than the

decision costs, 0.87%, that we find for the nested model.43 They do not attempt to calculate the

revenue loss caused by the suboptimality of the price process at the firm they study.
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3.4 Some puzzles from microdata

Our model also helps explain a number of puzzling observations from microdata. First, note that

our main (“nested”) model reproduces Eichenbaum, Jaimovich, and Rebelo’s (2011) finding

that prices are more volatile than costs (see Table 2). In their data, the ratio of the standard

deviation of log reference prices to that of log reference costs is 1.15.44 Both the FMC and

Calvo models predict that this ratio should be less than one, because optimal prices in these

frameworks anticipate mean reversion of productivity shocks. In our simulations, the ratio is

0.95 in the FMC model and 0.77 in the Calvo model; pricing is more “conservative” in the

Calvo case because there is no state dependence in the adjustment hazard. Likewise, prices are

less volatile than costs in the EiP and especially the EiT versions of our model. But in the nested

version, pricing and timing errors interact to augment price dispersion. In particular, when a

delayed adjustment to an exogenous shock (a timing error) is reinforced by a pricing error in

the same direction, the result is an exceptionally large adjustment. Under our calibration, the

interaction of these two types of errors makes prices more variable than costs, as in the data.

FIGURE 5 ABOUT HERE

Figure 5 shows how our benchmark model performs relative to some microdata facts that

condition on the time since last adjustment.45 First, one might intuitively expect adjustment

hazards to increase with the time since the last change. Indeed, this is what happens in the EiT

and FMC specifications, in which newly-set prices are conditionally optimal, and subsequent in-

flation and productivity shocks gradually drive prices out of line with costs. But most empirical

studies find that price adjustment hazards are mildly decreasing with the time since adjustment,

even after controlling for heterogeneity, as in Nakamura and Steinsson (2008), whose empirical

hazards are shown as shaded bars in the left panel of Figure 5. The nested specification is more

consistent with these data, since it implies that the hazard is largely independent of the age of

the price. In fact, the hazard in this version of the model has a mildly negative slope at the

29



beginning, because firms sometimes choose to readjust to correct a recent mistake.

The shaded bars in the middle panel of Figure 5 illustrate Klenow and Kryvstov’s (2008)

data on the average absolute price change as a function of the time since last adjustment. The

size of the adjustment is largely invariant with the age of the current price, with a slightly

positive slope. In the EiT and FMC models (not shown), the size of the adjustment is instead

strongly increasing with the time since last adjustment, since an older price is likely to be farther

out of line with current costs. Under the errors-in-prices and nested specifications, the size of

the adjustment varies less with the age of the price, although it is initially decreasing (due to the

correction of recent errors). It is unclear which of our specifications performs best relative to

this feature of the microdata.

Finally, the right panel of the figure illustrates Campbell and Eden’s (2014) observation that

extreme prices tend to be young. The shaded bars represent their data, after controlling for sales;

the figure shows the fraction of prices that are less than two months old, as a function of the

deviation of the price from the mean price in the product group to which that price belongs. In

the Campbell and Eden data, the fraction of young prices is around 50% for prices that deviate

by more than 20% from the mean, whereas the fraction of young prices is only around 35%

for a price equal to the mean. Extreme prices also tend to be young in the errors-in-prices and

nested models; in these models extreme prices often result from an extreme productivity draw

compounded by an error, and are therefore unlikely to last long.

3.5 Money supply shocks

Next, we turn to the effects of monetary shocks. Figure 6 shows the impulse responses of in-

flation and consumption to a 1% money growth rate shock with monthly autocorrelation 0.8, in

each parameterization of our model and also in the Calvo and FMC frameworks. As Golosov

and Lucas (2007) and other recent papers have made clear, the strength of monetary nonneu-

trality varies greatly across models of price stickiness. After an increase in money growth, the
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Calvo model (highlighted with diamonds) implies a small but very persistent rise in inflation,

leading to a large and persistent expansion of output. In the FMC model (triangles), there is

instead a large inflation spike that is even less persistent than the money growth process itself,

as price adjustment anticipates the autocorrelation of money growth; this abrupt equilibration

of prices makes the effect on output smaller and much less persistent.

FIGURE 6 ABOUT HERE

The real effects arising in our benchmark nested model are intermediate between the Calvo

and FMC cases. Consumption rises by 1.8% on impact in the benchmark model (highlighted

with dots) following a one percent money growth shock, and converges back to steady state

with a half-life of four months. This is less persistence than we reported for the “smoothly

state-dependent pricing” specification of Costain and Nakov (2011B), but it is roughly twice as

persistent as the real response of the FMC model. If we take the area under the consumption

impulse response function as a measure of the total nonneutrality, then the figures show that

our nested model has roughly two-and-a-half times the nonneutrality of the FMC case, while in

turn the Calvo framework triples the nonneutrality again.

Interestingly, the impulse responses in the EiT case (squares) closely resemble those of

the nested model, with a similarly strong real expansion. This suggests that the timing errors

associated with the logit hazard function are the main factor responsible for the real effects in the

nested model too. Timing errors obviously help drive monetary nonneutrality since they imply

that some prices fail to adjust immediately after a monetary shock. In other words, timing errors

reduce the “selection effect” that eliminates the reaction of real variables to nominal shocks in

some state-dependent pricing models. The complete lack of a selection effect explains the

strength of nonneutrality in the Calvo model.

In contrast, money growth shocks in the EiP framework (circles) have a much weaker impact

on consumption. Pricing errors are small, and timing is perfectly rational, so the small decision
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cost and the risk associated with price adjustment in the EiP model basically act like a small

menu cost. Thus, as we already saw in Figure 3, the EiP and FMC specifications behave very

similarly when they are calibrated to the same data. This is true of the impulse responses too: a

money supply shock causes a strong initial inflation spike, due to the immediate price changes

made as firms cross the lower (S,s) band when the money supply increases, and the impulse

responses are almost indistinguishable across the two specifications.

FIGURE 7 ABOUT HERE

To show that the brief inflation spike in the EiP and FMC models is indeed due to “selection”

in the sense of Golosov and Lucas (2007), we decompose the inflation response in Figure 7. We

define the conditionally optimal price p∗t (a) ≡ argmaxpvt(p, a), and also x∗t (p̃, a) ≡ p∗t (a)− p̃,

the desired log price change of a firm that starts period t with log productivity a and log real

price p̃. Firm i’s actual adjustment can thus be decomposed as xit = x∗t (p̃, a) + εit, where εit is

an error, in logs. We can write the average desired adjustment x∗t , the fraction of firms adjusting

λt, and the average log error εt as follows:

x∗t =

∫ ∫
x∗t (p̃, a)dp̃daΨ̃t(p̃, a) , (35)

λt =

∫ ∫
λt(p̃, a)dp̃daΨ̃t(p̃, a) , (36)

εt =

∫ ∫ {∫
(p− p∗t (a)) dpπt(p|a)

}
λt(p̃, a) dp̃daΨ̃t(p̃, a). (37)

Then inflation can be expressed as

it =

∫ ∫
x∗t (p̃, a)λt(p̃, a) dp̃daΨ̃t(p̃, a) + εt. (38)

To a first-order approximation, we can decompose the time-t inflation deviation as

∆it = λ∆x∗t + x∗∆λt + ∆

∫ ∫
x∗t (p̃, a)

(
λt(p̃, a)− λt

)
dp̃daΨ̃t(p̃, a) + ∆εt, (39)
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where terms without time subscripts represent steady states, and ∆ represents a change relative

to steady state.46

TABLE 3 ABOUT HERE

The “intensive margin”, It ≡ λ∆x∗t , is the part of inflation due to changes in the aver-

age desired adjustment, holding fixed the fraction of firms adjusting. The “extensive margin”,

Et ≡ x∗∆λt, is the part due to changes in the fraction adjusting, assuming the average de-

sired change among those who adjust equals the steady-state average in the population. The

“selection effect”, St ≡ ∆
∫ ∫

x∗t (p̃, a)
(
λt(p̃, a)− λt

)
dp̃daΨ̃t(p̃, a), is the inflation caused by

redistributing adjustment opportunities from firms desiring small (or negative) price changes to

firms desiring large (positive) changes, while fixing the number of adjusters. The last term, ∆εt,

is the change in the average log error. Figure 7 decomposes inflation in the EiP, EiT, and nested

models. As expected, the spike of inflation on impact in EiP is overwhelmingly attributed to se-

lection. Interestingly, inflation is also driven primarily by selection in the nested model, but this

selection effect is more spread out over time. The intensive margin is smaller, and the extensive

margin and error margins are negligible, in all cases considered.47

In Table 3, we further assess the degree of monetary nonneutrality by running two calcu-

lations from Golosov and Lucas (2007). Assuming for simplicity that inflation is driven by

money shocks only, we calibrate the variance of the shocks for each specification to fit the stan-

dard deviation of quarterly US inflation (0.25%). We then check what fraction of US output

fluctuations can be explained by those shocks. In the EiT and nested cases, these money shocks

would explain more than 70% or 80% of the observed variation in US output growth, while in

EiP they would explain only 38%, consistent with the strong inflation spike and small output

response observed in Figure 6 for EiP. In the last line of the table, we also report “Phillips curve”

coefficients, meaning estimates from an IV regression of the effect of inflation on output, instru-

menting inflation by the exogenous money supply process. The coefficient is twice as large for
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the nested and errors-in-timing cases as it is for EiP. Thus, allowing for errors in timing suffices

to generate large real effects of money shocks.

FIGURE 8 ABOUT HERE

Figure 8 shows that nonneutrality in the nested model is quite robust to large changes in the

persistence of money growth. It compares impulse responses as the persistence parameter φz

varies from 0 (unadorned line) to 0.8 monthly (the benchmark value, shown as a line with dots),

and to 0.9, 0.99, and 0.999 monthly (triangles, squares, and circles, respectively). In each case

the amplitude of the shock is rescaled to give a five percent total increase in the money supply.

To emphasize the scale of the shock, we plot all the impulse responses in cumulative terms,

showing the level of money, the level of prices, and the cumulative change in consumption.48

As monetary persistence increases, the real effects of the shock gradually vanish. Qualitatively,

this is unsurprising; if money supply shocks are highly persistent, their impact is mostly “an-

ticipated” money growth, to which firms can adjust ahead of time. Therefore, the effects of the

shock gradually tend to neutrality as persistence approaches one (a random walk in the money

growth rate). However, persistence must be very high for this difference to be appreciable. The

consumption and inflation responses to money growth shocks with persistence 0, 0.8, and 0.9

are almost indistinguishable. Even with φz = 0.99, the cumulative consumption response is still

around two-thirds of its level in the benchmark calibration of φz = 0.8. Only when monthly

persistence rises to 0.999 does the consumption response become trivial.49

3.6 Trend inflation

Finally, in Figures 9-10, we study how price dynamics in our nested logit model respond to

large changes in inflation. We simulate trend inflation rates from -10% to 80% annually, which

is the range of inflation documented by Gagnon (2009) in Mexican data from 1994 to 2002.50

FIGURE 9 ABOUT HERE
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The left panel of Figure 9 shows how the frequency of price adjustment varies with trend

inflation. Adjustment hazards are substantially higher in the Mexican data than the US data used

in our calibration. We eliminate this level shift in the graph by normalizing the hazard to one

at the observed 1994 pre-crisis inflation rate, in order to focus on changes in the frequency of

adjustment. Our benchmark model matches the observed change in the hazard well: it roughly

triples as inflation rises from 0% to 80%. Timing errors are important for this result. In the EiP

model, where timing is frictionless, the hazard more than quadruples as inflation rises to 80%,

a much larger change than that in the data.

The middle panel of the figure focuses instead on the size of price changes. Our model

is somewhat less successful on this score: the average absolute price change doubles from its

minimum of 8pp, to 16pp, as inflation rises to 80% annually, while in the Mexican data the size

of price changes rises by 50%, to 12pp. On this statistic the EiP specification outperforms our

benchmark model: the average size of price changes varies less with inflation if adjustments are

affected by pricing errors but not by timing errors.

In the third panel, Figure 9 shows how the fraction of price increases varies with trend

inflation. Our benchmark model closely tracks the fraction of increases in Mexican data, rising

from 50% at 0% inflation to 93% at an 80% annual inflation rate. In contrast, the EiP, EiT,

and FMC models all tend quickly to a limit with almost 100% price increases. Intuitively, the

fat tails of the price histogram induced by the coexistence of pricing and timing errors help

maintain the likelihood of price decreases, so 7% of price changes are negative even at the

maximum inflation rate observed in the Mexican dataset.

FIGURE 10 ABOUT HERE

Since our model matches several features of price dynamics as trend inflation rises, it offers

an interesting laboratory to analyze how trend inflation alters the effects of monetary shocks.

Figure 10 compares the effects of a 1pp increase in money supply growth (with monthly auto-

correlation 0.8) across different underlying trend inflation rates. The plain solid line represents
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our benchmark exercise, simulating the response of the nested model starting from 2% trend

annual inflation; the figure compares how the effects differ at annual trend inflation rates of 0%,

10%, 20%, 40%, and 80%, respectively. The impact of money supply shocks on consumption

goes rapidly towards zero, and becomes much less persistent, as the trend inflation rate rises

above 10%. Qualitatively, this makes sense: the average adjustment frequency rises with infla-

tion, making prices effectively less sticky, so nonneutrality decreases. Quantitatively, our model

indicates that this effect is quite strong.

4 CONCLUSIONS

This paper has modeled nominal price rigidity as a near-rational phenomenon: price adjustment

is costly because it requires the firm to spend time making decisions. We operationalize this

idea by adopting the game-theoretic concept of “control costs” that increase with the precision

of choice. We extend Mattsson and Weibull’s (2002) result that decisions take the form of logit

random variables when control costs depend on relative entropy to derive a logit hazard that

governs the timing of price adjustment.

Our model implies that firms make errors on two margins– timing and pricing– and we

study each margin separately to see how these two types of errors interact. The model with

pricing errors but frictionless timing (EiP) implies that prices are sticky when they are near the

optimum, since choice is costly and carries a risk of mistakes. These errors help match various

features of retail price behavior, but the EiP setup lacks sufficient degrees of freedom to fit both

the size distribution and the frequency of adjustments simultaneously. The model with errors

in timing but frictionless price choices (EiT) generates substantially greater nonneutrality than

EiP, because timing errors weaken the selection effect in adjustment dynamics. But by allowing

for errors on both margins, the nested specification achieves a better fit to microdata while also

reinforcing the nonneutrality of the EiT model.
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Although we study a different source of nominal rigidity, our findings share some common

ground with other recent studies of state-dependent pricing. Like Midrigan (2011), Álvarez et

al. (2011), and Dotsey et al. (2013), we find that closely fitting a state-dependent pricing model

to microdata implies greater monetary nonneutrality than a fixed menu cost model does, but

less than that of a Calvo model with the same adjustment frequency. A similar mechanism is at

work in all these papers: selection is weaker than in an FMC model because the hazard varies

less abruptly with the value of adjustment — either because the firm is managing several prices

simultaneously (Midrigan, 2011), or because it may not know the value of adjusting (Álvarez

et al., 2011), or due to a prohibitively high draw of the stochastic menu cost (Dotsey et al.,

2013). In the present paper, and in Costain and Nakov (2011B), we advocate an especially

simple explanation for weak selection: small, low-cost errors of timing diminish the correlation

between the value and the probability of adjustment.

While standard practice in microeconometrics includes error terms in all behavioral equa-

tions, most recent work on state-dependent pricing has instead modeled the full distribution of

price changes as if firms’ behavior were entirely error-free. Here, instead, we allow for mis-

takes, and interpret them structurally as the result of costly managerial decisions. The payoff

is that by allowing for errors, we can eliminate all other frictions (including “menu costs” and

exogenous probabilistic barriers to adjustment) but nonetheless match micro and macrodata at

least as well as competing frameworks (many of which are less sparsely parameterized). While

this paper has focused on price adjustment, our framework also seems applicable to a variety of

contexts where a decision maker intermittently flips a switch or updates a number or a vector.

Potential applications include wage bargaining, hiring and firing decisions, inventory control,

portfolio adjustments, lumpy investment, and control of policy instruments.
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[1] Álvarez, Fernando; Francesco Lippi; and Luigi Paciello. (2011) “Optimal price setting

with observation and menu costs.” Quarterly Journal of Economics, 126, 1909-1960.
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Notes

1For helpful comments, we thank H. Le Bihan, J. Campbell, A. Cheremukhin, R. Gary-Bobo, P. Karadi, A.

Levin, F. Lippi, B. Mackowiak, F. Matejka, I. Méjean, G. Nuño, R. Reis, L. Stevens, A. Tutino, C. Walsh, M.

Wiederholt, M. Woodford, and seminar participants at UC Santa Cruz, the Bank of Spain, CREST, FRB Richmond,

the Bank of England, the ECB, BI Business School, Simposio AEE 2011, T2M 2012, ESSIM 2012, CEF 2012,

EEA-ESEM 2012, the 2013 Chicago NBER Monetary Economics meeting, the 2013 BGSE Summer Forum, SED

2014, the 2014 NYU conference of the International Network on Expectations and Coordination, and the 2014

Vienna Macro Workshop, as well as the editor and referees. We also thank Borja Petit Zarzalejos (CEMFI) for

excellent research assistance. We are grateful to Virgiliu Midrigan for making his data available, and to the Kilts

Center at the Univ. of Chicago GSB, which is the source of those data. Views expressed here are those of the

authors and may not coincide with those of the Bank of Spain, the Eurosystem, the ECB, or the CEPR.

2Modelling error-prone human behavior as a probability distribution over feasible actions has a long history;

see Luce (1959), Machina (1985), or Anderson et al. (1992), Ch. 2.

3Logit equilibrium is a commonly-applied parametric special case of quantal response equilibrium (see McK-

elvey and Palfrey, 1995, 1998).

4This reflects much older results in physics, where a related optimization problem gives rise to the Boltzmann

distribution of particles in a gas.

5We build on some of our previous work: Costain and Nakov (2015A) derived logit errors in prices, and one of

the specifications in Costain and Nakov (2011A, B) imposed logit errors on adjustment timing.

6Several recent papers study a related source of retail price stickiness: learning about uncertain demand. See

Bachmann and Moscarini (2011), Ilut, Valchev, and Vincent (2016), and Argente and Yeh (2017).
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7The logit choice function is a well-known econometric framework for discrete choice. But logit equilibrium,

in which each player makes logit decisions, based on payoff values consistent with other players’ logit decisions,

has to our knowledge rarely been applied outside of game theory.

8Entropy plays a role in Sims’ approach, as a measure of information. It also enters our model, as an analytically

convenient measure of precision.

9Much of the rational inattention literature, including Khaw et al. (2017) and Steiner et al. (2017), addresses

partial equilibrium decision problems only. Alternatively, some rational inattention papers have computed general

equilibrium by assuming a linear-quadratic-Gaussian economy or placing other strong restrictions on functional

forms (Mackowiak and Wiederholt, 2009).

10These are gross real profits, prior to payment of the decision costs which we describe shortly.

11For concise notation, time subscripts on aggregate variables indicate dependence on the aggregate state. Thus,

if Ξt represents the real aggregate state of the economy, we index equilibrium quantities by t to indicate that they

are functions of Ξt. Hence ut(p, a) ≡ u(p, a,Ξt), and Ct ≡ C(Ξt), and so forth.

12We could instead apply our model to intermittent updating of a real price, provided we are specific about the

operational meaning of this control variable (e.g. indexing to some particular inflation indicator). To model control

of a real price, we would alter the right-hand side of Bellman equation (14); for the empirical analysis, we would

need data in which the real price changes could be observed or inferred.

13Allowing for a small “menu cost” too would be a simple but uninteresting extension; the model’s behavior

would be qualitatively unchanged.

14 While our framework resembles Sims (2003), we assume precise choice is costly, given one’s information,

rather than assuming information itself is costly. We also depart from Sims (2003) by being specific about the

control variable of the decision-maker, regarding each change in this control as a (costly) decision.

15Impatient readers who wish to skip the details of our decision cost function may jump directly to the two-stage

representation of the solution, in Sec. 2.2.2.

16Since we will consider distributions that contain point masses, (10) is written as a Stieltjes integral instead of

a Riemann integral. Moreover, at any x where π1(x) or π2(x) is nondifferentiable, the expression π′1(x)
π′2(x) should be

interpreted as lim∆↓0
π1(x)−π1(x−∆)
π2(x)−π2(x−∆) . Specifically, if π1 or π2 contains a mass point at x, then π′1(x)

π′2(x) represents the

ratio of the point masses at x.

17More specific interpretations are possible. One might assume that the cognitive costs of controlling the price

are paid primarily by a manager. Alternatively, even if managers can make error-free decisions costlessly, the firm

will face control costs if employees must exert effort to implement management’s instructions without error. In
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general our cost structure could stand in for errors or miscommunications anywhere in the firm’s management

process. Absent conclusive empirical evidence we will not restrict our interpretation here.

18See our working paper, Costain and Nakov (2015B), for a nominal description of the model, which is then

detrended it to obtain the real model studied here.

19In other words, for any nominal priceP considered at time t, we have π†(ln(P/Pt)) = Π†(P ) and θ†(ln(P/Pt)) =

Θ†(P ).

20 Hence the set of nominal prices considered at time t is ΓPt ≡ {P : ln(P/Pt) ∈ Γp}. But we do not actually

need to construct ΓPt since we solve the real, detrended model instead of computing it in nominal terms.

21See Online Appendix C for an exploration of quantitative robustness under different cost functions.

22If instead the firm’s control variable were its real price, then it,t+1 would not appear in (14).

23Cover and Thomas (2006), Theorem 2.7.2, shows that relative entropy is a nonnegative, convex function.

24Moreover, the mapping from the value function ot+1 to ot is a contraction; see Costain (2017), Prop. 5.

Therefore, the dynamic programming problem (13)-(14) converges to a unique solution.

25 If instead θ† has a mass point at p, (15) determines the ratio of the mass points in π† and θ†, instead of the

ratio of their densities.

26A hazard function of this form is also derived by Woodford (2008, 2009) from a model with a Shannon (1948)

constraint.

27Matejka and McKay (2015) show that a static optimization problem with an entropy cost function, of form

(20), is solved by the weighted logit (21).

28We thank Mike Woodford for suggesting this interpretation of the difference between our model and a rational

inattention setup.

29Since economists are familiar with models of costless rationality, they often equate observing a given infor-

mation set with knowing all quantities that can be calculated from it. But when reasoning is costly, these two as-

sumptions are not equivalent. Here, we assume firms have enough information to calculate vt(p, a) if they wished.

But since perfectly precise calculations are excessively costly in our framework, we do not equate possessing this

information with actually knowing vt(p, a) or the optimal action.

30The operators da and dp̃ indicate that integration is performed with respect to a and p̃, respectively.

31See Online Appendix C.2 for analysis of an economy governed by a Taylor rule. Our conclusions about state-

dependent pricing are similar for the case of a Taylor rule to those we document here for the simple, transparent

case of a money growth rule.

32The EiP case is discussed in greater detail in a previous paper, Costain and Nakov (2015A).
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33See Figure 3, which compares these histograms in the data and in each specification of our model.

34Since the Euclidean norm of a vector scales with the square root of the number of elements, we scale the first

term by
√

#h to place comparable weights on the two components of the distance measure.

35There are small quantitative changes if we double the support of θ, fixing other parameters. If we instead esti-

mate the width of the support, jointly with κ and λ̄, to minimize (33), then our results are visually indistinguishable

from those reported here. These and other robustness results are detailed in Online Appendix C.

36The Calvo (1983) specification has a constant 10.2% adjustment hazard per month; the FMC setup requires

firms to spend 0.0081 units of labor time to make a price change. These frameworks are otherwise frictionless, and

are otherwise identical to our benchmark model.

37It would also be interesting to allow the two noise parameters of the nested specification to differ, but we leave

this for future work, since the simple cross-sectional statistics in our estimation criterion may not suffice to identify

these parameters separately.

38The policy functions of the EiT and EiP limiting cases are illustrated in Figure 3 of our working paper, Costain

and Nakov (2015B).

39Note that since we assume no menu costs— all costs relate to choice rather than price adjustment per se—

firms have no reason to avoid a tiny price change if they calculate that this is the optimal thing to do.

40Eichenbaum et al. (2014) argue that many observations of small price changes are simply measurement error.

However, little changes when we reestimate our model to take their finding into account. For example, if we alter

our distance criterion (33) by assuming that all adjustments smaller than 1% are measurement error, our parameter

estimate changes to (κ, λ̄) = (0.027, 0.21). The fit is slightly worse, since even our benchmark parameterization

overpredicts small changes, but the micro and macro results we report are virtually unchanged.

41The table shows the expected gain in monthly revenues that would accrue to one infinitesimal firm if it could

permanently make error-free decisions at zero cost, holding fixed the behavior of all other firms.

42Since the loss from nominal price stickiness is low, there is also little to be gained by setting a real price

instead. The 1.41% revenue loss associated with setting a nominal price in the benchmark version falls to 1.36%

if the firm’s control variable is instead its real price.

43Since consumers are price takers in our model, all managerial costs of price adjustment in the model are related

to decision-making rather than negotiation.

44The “reference” prices and costs reported by Eichenbaum et al. (2011) eliminate “sales” and other transitory

changes. For their alternative measure of “weekly” prices and costs, the ratio of standard deviations is 1.08.

45For comparable graphs that show the EiP and EiT specifications too, see Costain and Nakov (2015B).
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46See Costain and Nakov (2011B) for further discussion of this decomposition.

47Because the adjustment process is asymmetric (bottom panels of Figure 2), the steady state average error is

nonzero. But time variation in the average error ε̄t is negligible.

48Hence the lines with dots in Figure 8 (showing the baseline value of persistence, φz = 0.8), represent the

integrals of the lines with dots in Figure 6.

49IRF calculations over longer time horizons confirm that the price level converges gradually to a 5 percentage

point change, but that cumulative consumption plateaus within roughly ten months.

50While Gagnon (2009) studies relatively short-lived changes in the inflation rate, we compare his data to

changes in trend inflation, which we can compute in a fully nonlinear way.
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Figure 1: Timing of firm behavior.
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Figure 2: Price change distributions and adjustment function: nested model.
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Lower panels plot slices at each cost A−1, for lnA ∈ Γa. Lowest cost highlighted with squares; highest cost
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Figure 3: Distribution of price adjustments: comparing models.
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Figure 4: Losses from failure to adjust: nested model.
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Figure 5: Price adjustment dynamics: nested model.
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Figure 6: Impulse responses to money growth shock: comparing models.
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Figure 7: Decomposition of inflation impulse responses: comparing models.
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Figure 8: Impulse responses to money growth, as function of autocorrelation.
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Figure 9: Effects of trend inflation: nested model.
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Figure 10: Impulse responses to money growth shock, as function of trend inflation.
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Table 1: Adjustment parameters.∗

Errors in Errors in
Calvo FMC timing (EiT) prices (EiP) Nested

λ̄ – – 0.045 – 0.22

κπ – – – 0.0044 0.018

κλ – – 0.0080 – 0.018

Exogenous hazard 0.102 – – – –

Menu cost – 0.0081 – – –
∗Parameters are chosen to minimize (33); the “nested” model imposes κπ = κλ.
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Table 2: Model-Simulated Statistics and Evidence (2% annual inflation)
Errors in Errors in

Calvo FMC timing prices Nested Data
Adjustment frequency
Frequency of price changes 10.2 10.2 10.2 10.2 10.2 10.2

Price change statistics
Mean absolute price change 3.4 5.8 4.68 6.72 7.51 9.90
Std of price changes 4.4 5.8 5.27 7.32 9.30 13.2
Kurtosis of price changes 4.5 1.6 2.22 2.37 3.40 4.81
Percent of price increases 67.1 63.4 63.3 62.3 58.8 65.1
Percent of changes ≤ 5% 70.9 29.5 49.7 27.9 33.6 35.4

Variability of prices and costs
100 × Std(p)/Std(a) 77.5 95.4 91.0 97.7 104 115∗∗

Costs of decisions and errors
Pricing costs∗ 0 0.19 0 0.174 0.509
Timing costs∗ 0 0 0.167 0 0.361
Loss relative to full rationality∗ 0.91 0.32 0.416 0.365 1.41
Notes: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.
Quantities with an asterisk are stated as a percentage of monthly average revenues.
Dataset: Dominick’s, except for double asterisk, which indicates Eichenbaum et al. (2011).
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Table 3: Variance decomposition and Phillips curves
Correlated money growth shock Errors in Errors in
(φz = 0.8) timing prices Nested Data
Freq. of price changes (%) 10.2 10.2 10.2 10.2
Std of money shock (%) 0.15 0.12 0.17

Std of qtrly inflation (%) 0.25 0.25 0.25 0.25
% explained by µ shock alone 100 100 100

Std of qtrly output growth (%) 0.37 0.20 0.43 0.51
% explained by µ shock alone 73 38 84

Slope coeff. of Phillips curve 0.29 0.15 0.35
R2 of regression 0.94 0.85 0.98
Notes: The “slope coefficients” are 2SLS estimates of the effect of inflation on consumption.
First stage: πqt = α1 + α2µ

q
t + εt; second stage: cqt = β1 + β2π̂

q
t + εt, where the instrument µqt

is the money supply growth rate and superscript q indicates quarterly averages.
Dataset: Dominick’s.
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Online Appendices for “Logit price dynamics”, July 2018

James Costain (Banco de España and European Central Bank)

Anton Nakov (European Central Bank and CEPR)

ONLINE APPENDIX A: COMPUTATION

Outline of algorithm

Heterogeneity is a challenge when computing our model: at any time t, productivities Ait and

prices Pit will differ across firms. The Calvo model is popular because, up to a first-order

approximation, only the average price matters for equilibrium. But this property does not hold

in most sticky-price models, in which equilibrium quantities depend on the whole time-varying

distribution of prices and productivity across firms.

To address this issue, we apply Reiter’s (2009) solution method for dynamic general equi-

librium models with heterogeneous agents and aggregate shocks. As a first step, the algorithm

calculates the steady-state general equilibrium in the absence of aggregate shocks. Idiosyncratic

shocks are still active, but are assumed to have converged to their ergodic distribution, so the

real aggregate state of the economy is a constant, Ξ. The algorithm solves a discretized approx-

imation of the underlying model; here we restrict real log prices pit and log productivities ait

to a fixed grid Γ ≡ Γp × Γa, where Γp ≡ {p1, p2, ...p#p} and Γa ≡ {a1, a2, ...a#a} are both

uniformly spaced (in logs). We can then view the steady state value function as a matrix V of

size #p×#a, comprising the values vjk ≡ v(pj, ak,Ξ) associated with prices and productivities(
pj, ak

)
∈ Γ.1 Likewise, the price distribution can be viewed as a #p ×#a matrix Ψ in which

the row j, column k element Ψjk represents the fraction of firms in state (pj, ak) at the end of

any given period. To calculate steady state general equilibrium, we can guess the wage w, then

1In this appendix, bold face indicates matrices, and superscripts represent indices of matrices or grids.
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solve the firm’s problem by backwards induction on the grid Γ, then update the conjectured

wage, and iterate to convergence.

The second step constructs a linear approximation to the dynamics of the discretized model,

by perturbing it around the steady state general equilibrium on a point-by-point basis. The

value function is represented by a #p × #a matrix Vt with row j, column k element vjkt ≡

v(pj, ak,Ξt), summarizing the time t values at all grid points (pj, ak) ∈ Γ. Then, instead of

treating the Bellman equation as a functional equation that defines v(p, a,Ξ) for all possible

idiosyncratic and aggregate states p, a, and Ξ, we view it as a difference equation linking the

matrices Vt and Vt+1. This amounts to a (large!) system of #p#a first-order expectational

difference equations governing the #p#a variables vjkt . We linearize these equations numeri-

cally (together with the #p#a equations that govern the distribution Ψt, and a few other scalar

equations). We solve the linearized model using the QZ decomposition, following Klein (2000).

This method combines linearity and nonlinearity in a way appropriate for models of price

setting, where idiosyncratic shocks tend to be more relevant for firms’ decisions than aggregate

shocks are. By linearizing the aggregate dynamics, we recognize that changes in the aggregate

shock zt or in the distribution Ψt are unlikely to have a highly nonlinear impact on the value

function. This smoothness does not require any “approximate aggregation” property, in contrast

with the Krusell and Smith (1998) method; nor do we need to impose any particular functional

form on the distribution Ψ. However, to allow for the strong impact of firm-specific shocks, the

method treats variation along idiosyncratic dimensions in a fully nonlinear way: the value at

each grid point is determined by a distinct equation.

The discretized model

In the discretized model, the value Vt is a #p × #a matrix with elements vjkt ≡ v(pj, ak,Ξt)

for
(
pj, ak

)
∈ Γ. A uniform default distribution θ allocates probability 1/#p to each price in

Γp. Solving a single Bellman step analytically, the expected value of setting a new price is a
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row vector ṽt of length #a, with kth element

ṽkt ≡ κπwt ln

(
1

#p

#p∑
j=1

exp

(
vjkt
κπwt

))
. (40)

The value function Ot is also a #p ×#a matrix, as is the hazard policy Λt and the logit price

probabilities policy Πt; their (j, k) elements are given by2

ojkt ≡ κλwt

(
λ̄ exp

(
ṽkt
κλwt

)
+ (1− λ̄) exp

(
vjkt
κλwt

))
, (41)

λjkt ≡ λ̄
(
λ̄+ (1− λ̄) exp((vjkt − ṽkt )/(κwt))

)−1

, (42)

πjkt ≡
exp

(
vjkt /(κwt)

)
∑#p

n=1 exp
(
vnkt /(κwt)

) . (43)

The latter represents the probability of choosing real log price pj conditional on log productivity

ak if the firm decides to adjust its price at time t.

In this discrete representation, the productivity process (34) can be written as a #a × #a

matrix S, where the (m, k) element represents the following transition probability:

Smk = prob(ait = am|ai,t−1 = ak).

Likewise, we can write the impact of inflation on real prices in Markovian notation. Let Rt be

a #p×#p matrix in which element (m, l) represents the probability that firm i’s beginning-of-t

2Equation (42) is a simplified description of λjkt . While (42) implies that λjkt represents the function λt(pj , ak)

evaluated at the log price grid point pj and log productivity grid point ak, in our computations λjkt in fact repre-
sents the average of λt(p̃, ak) over all log prices in the interval

(
pj−1+pj

2 , p
j+pj+1

2

)
, given log productivity ak.

Calculating this average requires interpolating the function vt(p̃, ak) between price grid points. Defining λjkt this
way ensures differentiability with respect to changes in the aggregate state Ωt.
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log real price p̃it equals pm ∈ Γp, if its log real price at the end of t− 1 was pl ∈ Γp:

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl).

Generically, the deflated log price pi,t−1 − it−1,t will fall between two grid points; then the

matrix Rt must round up or down stochastically.3 Also, if pi,t−1 − it−1,t lies below the smallest

or above the largest element of the grid, then Rt must round up or down to keep prices on the

grid.4 Unbiased rounding results if Rt is constructed as:

Rml
t = prob(p̃it = pm|pi,t−1 = pl, it) =



1 if pl − it ≤ p1 = pm

pl−it−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl − it}
pm+1−pl+it
pm+1−pm if p1 ≤ pm = max{p ∈ Γp : p < pl − it}

1 if pl − it > p#p
= pm

0 otherwise.
(44)

The distributional dynamics can now be written in compact matrix form; eq. (23) becomes:

Ψ̃t = Rt ∗Ψt−1 ∗ S′, (45)

where ∗ represents ordinary matrix multiplication. Productivity shocks are represented by right

multiplication, while transitions in the real price level are represented by left multiplication.

Next, to calculate the effects of price adjustment on the distribution, let Epp and Epa be matrices

of ones of size #p ×#p and #p ×#a, respectively. Eq. (24) is then:

Ψt = (Epa−Λ) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λ . ∗ Ψ̃t)), (46)

3If instead the firm’s control variable were its real price, then Rt would simply be an identity matrix.
4In other words, any nominal price leading to a real log price below p1 after inflation is automatically rounded

up to the real log price p1 (and to compute examples with deflation we must shift down any real log price exceeding
p#p

). This assumption is made for numerical purposes only, and has a negligible impact on the equilibrium as long
as Γp is sufficiently wide.
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where (as in MATLAB) the operator .∗ represents element-by-element multiplication.

The same transition matrices R and S appear in the matrix form of the Bellman equation.

Let Ut be the #p ×#a matrix of current payoffs, with elements

ujkt ≡
(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
(47)

for
(
pj, ak

)
∈ Γ. Then Bellman equation (14) becomes:

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗Ot+1 ∗ S

]}
. (48)

The expectation Et in (48) refers only to the effects of the time t + 1 aggregate shock zt+1,

because the expectation over idiosyncratic states (pj, ak) ∈ Γ is represented by multiplying by

R′t+1 and S. Note that since (48) iterates backwards in time, its transitions are governed by R′

and S, whereas (45) iterates forward in time, involving R and S′.

We now discuss how we apply Reiter’s (2009) two-step method to this discrete model.

Step 1: steady state

In the aggregate steady state, aggregate shocks are zero, and the distribution is in a steady state

Ψ, so the state of the economy is constant: Ξt ≡ (zt,Ψt−1) = (0,Ψ) ≡ Ξ. We indicate steady

states of all equilibrium objects by dropping time subscripts and the function argument Ξ, so

the steady state value function V has elements vjk ≡ v(pj, ak,Ξ).

Long run monetary neutrality implies that nominal money growth rate equals the inflation

rate in steady state: µ = exp(i). Thus, the steady-state transition matrix R is known, since it

depends only on inflation i, and the Euler equation reduces to exp(i) = βR.

We can then calculate general equilibrium as a one-dimensional root-finding problem in w.
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Given w, we calculate C = (w/χ)1/γ , and then construct matrix U, with elements

ujk ≡
(

exp(pj)− w

exp(ak)

)
C

exp(εpj)
. (49)

We can then find the fixed point of the value V (simultaneously with ṽ and O):

V = U + βR′ ∗O ∗ S. (50)

This allows us to calculate the logit matrix Π, with elements

πjk ≡
exp

(
vjk/(κw)

)∑#p
n=1 exp (vnk/(κw))

. (51)

Likewise, we calculate the hazard matrix Λ. We can then find the steady state distribution by

iterating on the two-step distributional dynamics:

Ψ = (Epa−Λ) . ∗ Ψ̃ + Π . ∗ (Epp ∗ (Λ . ∗ Ψ̃)) (52)

Ψ̃ = R ∗Ψ ∗ S′ (53)

Finally, we check whether

1 =

#p∑
j=1

#a∑
k=1

Ψjk exp
(
(1− ε)pj

)
≡ p(w) (54)

If p(w) = 1, then an equilibrium value of w has been found.

Step 2: linearized dynamics

Given the steady state, the general equilibrium dynamics can be calculated by linearization.

First, we eliminate as many variables from the equation system as we can, summarizing the
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dynamics in terms of the exogenous shock process zt, the lagged distribution of idiosyncratic

states Ψt−1, and the endogenous “jump” variables including Vt, Πt, Ct, mt−1, and it. The

equation system reduces to

zt = φzzt−1 + εzt (55)

µ exp(zt)

exp it
=

mt

mt−1

(56)

Ψt = (Epa −Λt) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)) (57)

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗Ot+1 ∗ S

]}
(58)

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t exp((1− ε)pj) (59)

If we now collapse all the endogenous variables into a single vector

−→
X t ≡

(
vec (Ψt−1)′ , vec (Vt)

′ , Ct, mt−1, it
)′

then the whole set of expectational difference equations (55)-(59) governing the dynamic equi-

librium becomes a first-order system of the following form:

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0 (60)

where Et is an expectation conditional on zt and all previous shocks.

To see that the vector
−→
X t in fact contains all the variables we need, note that given it

and it+1 we can construct Rt and Rt+1. Given Rt, we can construct Ψ̃t = Rt ∗ Ψt−1 ∗ S′

from Ψt−1. Given wt = χCγ
t , we can construct Ut, with (j, k) element equal to ujkt ≡(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
. Finally, given Vt, and Vt+1 we can construct Πt and ṽt, and

thus Λt and Ot+1. Therefore the variables in
−→
X t and zt are indeed sufficient to evaluate the

system (55)-(59).
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Finally, if we linearize system F numerically with respect to all its arguments to construct

the Jacobian matricesA ≡ D−→
X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF , then we obtain

a linear first-order expectational difference equation system:

EtA∆
−→
X t+1 + B∆

−→
X t + EtCzt+1 +Dzt = 0 (61)

where ∆ represents a deviation from steady state. This system has the form considered by Klein

(2000), so we solve our model using his QZ decomposition method.
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ONLINE APPENDIX B: SEQUENTIAL STATEMENT OF THE

OPTIMIZATION PROBLEM

In this appendix, we discuss a sequential representation of the firm’s partial-equilibrium de-

cision problem. In this representation, we think of the firm as choosing a plan contingent on

any possible history up to a given time T . In particular, it must consider histories (p̃T , aT ,ΞT )

incorporating its own prices and productivity, and aggregate states, where superscripts indicate

time series: p̃T ≡ (p̃0, p̃1, . . . , p̃T ), and likewise for aT and ΞT .

By repeated substitution in the recursive problems (13)-(14), we can derive the following

sequential optimization problem:

o0(p̃0, a0) = max
π†t∈∆(Γp(p̃t))

E0

∞∑
t=0

q0,t

[∫
ut(pt, at)dπ

†
t(pt)− κwtD

(
π†t ||θ†(·|p̃t)

)]
(62)

s.t. p̃t = pt−1 − it−1,t, and
∫
dπ†t(p) = 1 for all t. (63)

Here E0 refers to an expectation calculated under the dynamics of the firm’s productivity shock

at and the dynamics of the aggregate state Ξt. The discount factor is q0,t ≡ Πt−1
s=0qs,s+1, where

qt,t+1 ≡ β
PtC

−γ
t+1

Pt+1C
−γ
t

; we assume discount factors satisfy
∑∞

t=0 q0,t <∞.

The choice problem here is to be understood as choosing a function π†t(p̃t, at,Ξt) conditional

on each history (p̃t, at,Ξt) of length t. Here p̃t = pt−1 − it−1,t represents the log real price at

the beginning of t, prior to the choice of π†t , and ∆(Γp(p̃t)) is the set of increasing functions

f satisfying f(min Γp(p̃t)) ≥ 0; constraint (63) ensures that f is a c.d.f. Notice that if two

functions π1
t and π2

t both lie in the set ∆(Γp(p̃t)) and both integrate to one over Γp(p̃t), then so

does any convex combination of those functions. The same argument can be made for history-

contingent plans. Therefore we conclude that the choice set in problem (62)-(63) is convex.

Moreover, the objective function contains two terms (for each t): expected profits, which

are a linear function of π†t , minus decision costs, which are a convex function of π†t . Therefore
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the objective function of (62)-(63) is concave.

We should also be careful to check that the constraint set of problem (62)-(63) is non-empty,

and that the objective function is finite-valued. Note that the strategy π†t = θ†(·|p̃t) is feasible,

and has zero decision cost, attaining the value

o0(p̃0, a0) ≡ E0

∞∑
t=0

∫
q0,tut(pt, at)dθ

†(pt|p̃t) > −∞.

This lower bound is finite because sets Γa and Γp are assumed bounded, and the profit function

in (8) is continuous. On the other hand, the value of (62)-(63) is bounded above by

o0(a0) ≡ E0

∞∑
t=0

q0,t max
p
ut(p, at) < ∞.

Therefore the value of (62) is bounded: o0(p̃0, a0) < o0(p̃0, a0) < o0(a0).

Thus (62)-(63) maximizes a concave function over a non-empty, convex set, attaining a

finite value. Hence there can be at most one solution to the first-order conditions, and if such

a solution is found, it represents a solution to the optimization problem (62)-(63). Indeed, the

first-order conditions yield the same solution that we found for the recursive problem (13)-(14).5

5Deriving the first-order conditions of (62)-(63) is tedious, so we omit them here, but they closely re-
semble those of (13)-(14). Where the value vt(pt, at) appears in (15), we instead find a term of the form
Et
∑∞
s=0 qt,t+sprob(pt+s = pt − it,t+s)ut+s(pt − it,t+s, at+s), where it,t+s ≡ ln(Pt+s/Pt). This term repre-

sents the discounted sum of profits at all future times t+ s conditional on the nominal price set at time t remaining
unadjusted at time t+ s.
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ONLINE APPENDIX C: ROBUSTNESS OF THE RESULTS

C.1 Changing the decision cost function

In our model, the precision of price choices is measured by comparing the firm’s chosen price

distribution to an exogenously fixed “default” distribution. We have run extensive simulations

to explore whether our results are robust to changes in the assumed default distribution. In

summarizing our conclusions, it is useful to distinguish two properties of the default distribution

– its functional form, and its standard deviation. We find that our results are qualitatively and

quantitatively robust to changes in both of these properties. There is a simple reason for this:

we estimate that decision costs are low. Since deviating from the default distribution is not very

costly, the precise form of that default has little impact on our results.

If we generalize the uniform default probabilities assumed in our benchmark parameteriza-

tion, then the weighted logit (21) no longer reduces to the unweighted logit (43). To see how

the results differ, compare the blue and black lines in the price change histogram (left panel)

and impulse responses (middle and right panels) shown in Figure C.1. The black lines represent

the benchmark uniform specification; the blue lines instead assume a truncated normal default

distribution, with the same standard deviation. The results are almost identical. We have com-

puted several other examples which show that the form of the default distribution has very little

effect. In other words, firms’ optimization, represented by exp(v/(κw)) in the logit formula

(21), is powerful enough that reweighting by a different distributional form θ hardly matters.

The fact that we define the default distribution on a discrete grid is likewise irrelevant for

the results. Computation on a discrete grid is a matter of numerical necessity. However, making

this grid much finer has entirely negligible effects, both on the steady state and on the dynamic

implications of the model.

Another change that might seem especially relevant would be to allow the default distribu-

tion to vary over time by recentering it on the previous nominal price. We simulated a speci-
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Figure C.1: Uniform versus normal default distributions.

Notes:
Comparing benchmark uniform default distribution (as in paper) with truncated normal default distribution.
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

fication of this type, assuming a truncated normal default θ(p|p̃) centered around p̃, the price

prior to adjustment. Figure C.2 compares this specification to the unchanging uniform distribu-

tion used in our benchmark calculations.6 The recentered normal specification (blue) implies a

somewhat more symmetric histogram, a small increase in the adjustment hazard, and a resulting

small decrease in the real effects of a money shock. But overall the differences are minor.

The effects of increasing the standard deviation of the default distribution are shown in

Figure C.3. The benchmark results are shown in black; the effects of making the grid 100%

wider (while fixing the grid step size) are shown in green.7 Doubling the grid width makes

the histogram more strongly bimodal (improving fit in the center while making it worse in the

tails); the frequency of adjustment decreases from 10.2% to 6.6% monthly (because choosing

from a wider range of prices amounts to a more difficult decision problem) and therefore the

real effects of the money shock increase slightly.

Thus, changing the standard deviation of the default distribution has a small but nontrivial

6Figure C.2, like Figure C.1, changes the form of the default distribution without altering its standard deviation.
7We have also studied the effects of increasing the standard deviation of the default distribution when the default

is a truncated normal. The (small) effects are similar to those shown in Figure C.3 for the uniform case.
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Figure C.2: Uniform versus recentered normal default distributions.

Notes:
Comparing benchmark uniform default distribution (as in paper) with truncated normal default distribution θ(p|p̃)
centred around pre-adjustment price p̃.
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

impact on the results. But would it make any difference if we treated the standard deviation

of the default as another free parameter to be estimated? This question is also addressed in

Figure C.3, where the red line shows the results of jointly estimating κ, λ̄, and the width of

the price grid Γp to maximize our estimation criterion (33). The estimation favors a harder

decision problem than we assumed in our benchmark calibration (the preferred grid is slightly

more than twice as wide as the benchmark grid) but this is compensated by a slightly less error-

prone and substantially quicker decision process (κ = 0.17 and λ̄ = 0.35, in contrast to the

previous values κ = 0.18 and λ̄ = 0.22). The implied adjustment frequency is again 10.2%

monthly, with the result that the impulse responses are almost indistinguishable from those in

the benchmark specification (the black benchmark IRF is almost invisible under the red IRF

resulting from estimating the width of the grid; likewise the black and red price adjustment

histograms are almost identical). So while widening the grid, ceteris paribus, slightly increases

monetary nonneutrality, estimating the grid width jointly with our other parameters gives results

nearly identical to our benchmark parameterization.

Why are the impulse responses unchanged when we reestimate the model? All of the robust-
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Figure C.3: Widening the support of the uniform default distribution.

Notes:
Black: uniform default distribution (benchmark from paper). Green: uniform default with 100% wider support.
Red: reestimating model with width of support of default as a free parameter. (Grid step size fixed.)
Left panel: Histogram of nonzero log price adjustments (Dominick’s data shown as blue bars).
Middle and right panels: impulse responses to money growth shock with monthly autocorrelation 0.8.

ness exercises that we have run suggest that as long as our model matches the 10.2% adjustment

hazard of our estimation criterion, the degree of monetary nonneutrality is virtually unchanged.

Obviously this does not mean that all models with a 10.2% adjustment hazard are equivalent;

the Calvo model implies much larger real effects, as our paper shows. But our error-prone model

is very robust to changes in the specification of the default distribution, as long we parameterize

the model to fit the estimation criterion.

To summarize, changing the shape of the default distribution is not quantitatively relevant

for our results. Neither is treating its standard deviation as a free parameter to be estimated.

What matters is that price decisions are somewhat noisy (helping fit the microdata) and tim-

ing decisions are also somewhat noisy (diminishing the selection effect and generating higher

nonneutrality). The precise form of the noise is not at all essential for these conclusions.
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C.2 Extending the model

Throughout the paper we have studied a stripped-down general equilibrium structure in order to

focus primarily on the role of price stickiness. However, our framework can readily be extended

to incorporate a more complete macroeconomic environment. Building a full medium-scale

DSGE model is beyond the scope of this paper, but in this section we consider two especially

relevant extensions. Our main conclusions about state-dependent nominal rigidity are unaltered.

On one hand, there is no need to restrict monetary policy to a money growth rule. Here we

instead consider a Taylor-style interest rate rule of the form

it = φiit−1 + (1− φi)φπ [πt − ln(µ)] + εit,

where it is the net nominal interest rate, πt is the net inflation rate; µ is the steady-state target

inflation rate, φi is an interest rate smoothing parameter; φπ controls the strength of monetary

policy reaction to inflation; and εit is an interest rate shock. This rule replaces the money supply

equation (26).

Second, while nominal rigidity is central to generating real responses to purely nominal

disturbances, it is likely that multiple forms of real rigidity also play a role in propagating

shocks. In particular, Blanco (2017) imposes a production function with intermediate inputs, as

a realistic and tractable source of real rigidities that can reinforce the effects of nominal rigidity.

Here we modify the production function as follows:

Yit = AitN
1−η
it Mη

it ,

where Mit denotes the intermediate inputs used in the production of the differentiated final
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Figure C.4: Impulse responses to a Taylor rule shock, with intermediate inputs in production.
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goods Yit. The goods market clearing condition becomes

Yt = Ct +

∫
Mitdi ;

Ct is now replaced by Yt in equation (31).

We set φi = 0.9, φπ = 2, and η = 1/3. The impulse responses to a monetary policy

shock are shown in Figure C.4, which compares our nested benchmark specification (marked

LPD), with FMC and Calvo models that likewise allow for a Taylor rule and real rigidities.

The main purpose of this exercise is simply to show that the central results of our paper go

through in this extended version. Namely, the nested specification produces real effects that

fall between those of FMC and Calvo, and the relative degree of nonneutrality across these

frameworks is quantitatively similar to what we found previously. When calibrating a model

for applied purposes, real rigidities and a more realistic description of monetary policy are

relevant elements to include in the analysis. But the difference in nonneutrality implied by our

framework, relative to alternative models nominal rigidity, appears robust to these extensions.
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