Optimal inflation with firm-level shocks¹

Anton Nakov Henning Weber

ECB, CEPR, and Bundesbank

June 2023

A. Nakov and H. Weber

Introduction

- Price setting models nowadays include *idiosyncratic shocks* to match empirical price change histograms (Golosov-Lucas 2007)
- These models (matching micro pricing moments) have been used widely for positive analysis, e.g. to infer the degree of monetary non-neutrality
- However, few papers attempt normative analysis; e.g. not much is known about the optimal rate of inflation in these models
- "Folk wisdom" for normative conclusions: firm-level shocks do not affect the optimality of zero inflation the logic of the standard NK model applies

This project focuses on studying optimal inflation in canonical sticky price models with idiosyncratic productivity shocks a la Golosov-Lucas

We abstract from production networks and from shocks to market power

イロト 不得 トイヨト イヨト

Preview: key friction

- Generally, efficiency requires $\frac{\text{reset price}(j)}{\text{price level}} = \frac{\text{aggregate productivity}}{\text{idiosyncratic productivity}(j)}$
- With price stickiness, reset prices are inefficiently forward-looking:

 $\frac{\text{reset price}(j)}{\text{price level}} = \frac{\text{aggregate productivity}}{\text{expected discounted idiosyncratic productivity}}$

 \implies reset price distribution compressed relative to flexible prices

イロト イボト イヨト イヨト

Preview: reset price compression with AR(1) shocks

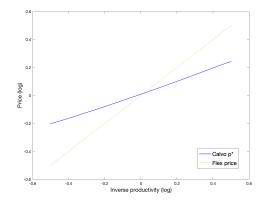


Figure: Optimal price compression in Calvo

イロト イヨト イヨト イヨ

Preview: nature of the misallocation

- Reset price of productive firms is inefficiently high, hence productive firms supply too small a share of aggregate demand relative to social optimum
- Reset price of unproductive firms is inefficiently low, hence unproductive firms supply too much of aggregate demand
- Reset price compression presents a new motive for choosing a negative optimal inflation rate π^{\star}
- Negative inflation rate helps align reset prices more closely with the current idiosyncratic shock realizations.
- By speeding up the pass-through of marginal cost shocks to prices, negative inflation increases aggregate productivity

イロト 不得 トイヨト イヨト

Trade-off

Two forces:

- The usual distortion between reset and non-reset prices (calling for zero inflation) in standard NK models
- **②** The distortion of reset prices themselves (calling for -100% inflation).

The first-best (efficient) allocation can no longer be achieved

The optimal trade-off is resolved at inflation rates around -2%.

For some plausible calibrations it may even be below the Friedman optimum (in a cashless economy!)

イロト イボト イヨト イヨト

Related work

- Large literature on money non-neutrality in pricing models with idio shocks
 - ► Golosov-Lucas 2007: Near-neutrality of money
 - Midrigan 2011: Simple menu cost model matches poorly histogram of price changes
 - Karadi & Reiff 2019: Large tax shocks reveal that degree of money non-neutrality is very sensitive to shape of idiosyncratic shock distribution
 - ▶ Our results rely on shocks' mean reversion a generic feature in the literature
- Small literature on π^* in pricing models with idiosyncratic shocks
 - Burstein & Hellwig 2008: Sticky prices vs Friedman rule
 - Blanco 2019: Sticky prices vs ZLB
 - ► Adam, Gautier, Santoro & Weber 2021: Sticky prices and product lifecycles
 - ▶ We focus on sticky prices only and rule out non-stationary productivity

イロト イヨト イヨト イヨト

Overview - NK model with firm-level shocks

- Representative household with discount rate $\beta \in (0, 1)$
- Aggregate output is CES composite with substitution elasticity θ
- Offset effect of flexible price markup using sales subsidy τ ,

$$\frac{\theta}{\theta-1}\frac{1}{1+\tau} = 1$$

 \implies flexible price allocation is efficient / first best

- Stochastic process for idiosyncratic productivity shocks
- Could have on top a non-stationary productivity shock common to all firms
- Aggregate productivity is endogenous and depends on inflation
- Calvo pricing, $lpha \in [0,1)$ denotes probability of not adjusting price

Technology of firm j and idiosyncratic productivity shocks

$$Y_{jt}Z_{jt} = L_{jt} \tag{1}$$

Inverse of idiosyncratic productivity shock is finite-state Markov

$$Z_{jt} = z'\xi_{jt} \tag{2}$$

- z is $K \times 1$ vector with inverse level of productivity in each state
- idio state ξ_{jt} equals $K \times 1$ unit vector e_i when idio state equals j
- unit unconditional mean $E(Z_{jt}) = 1$
- focus on ergodic distribution of idiosyncratic shocks, $\xi = E(\xi_{jt})$
- impose zero covariance btw idio shocks and aggregate variables

Aggregation of firms with idiosyncratic shocks

Aggregate technology

$$Y_t = \frac{1}{\Delta_t} L_t$$

Inverse aggregate productivity is output-weighted average of inverse idiosyncratic productivities,

$$\Delta_t = \int_0^1 Z_{jt} \underbrace{\left(\frac{Y_{jt}}{Y_t}\right)}_{=(P_{jt}/P_t)^{-\theta}} dj$$

Analytical aggregation yields recursive representation of Δ_t \bigcirc Details

Gross inflation $\Pi_t = \frac{P_t}{P_{t-1}}$ with P_t the welfare-based price level \bigcirc Details

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Misallocation under zero inflation: distortion # 1

- WLOG let us assume shocks are i.i.d, 2 states (j, k) and zero inflation
- Output is demand determined. A firm that adjusted when its state was j and now has state k: Z_kY_j^{*} = L_k
- Demand is determined by the reset price, which is a weighted average over current and expected future idiosyncratic costs p^{*}_j = ϑw [(1 - α/2)Z_j + α/2Z_k]
- A fully flexible price instead is set as: $p_j^* = \vartheta w^e Z_j$
- So reset prices are distorted (compressed)

ヘロト 人間 ト 人造 ト 人造 トー

Misallocation under zero inflation: distortion #2

- Firms with constant prices have continuously evolving idiosyncratic costs
- Let us average labor over all firms with the same demand $Y_j^* \left[(1 \frac{\alpha}{2})Z_j + \frac{\alpha}{2}Z_k \right] = L^j$
- Under rational expectations the average *j*-firm has the cost level that the resetting firm anticipates when in state *j*
- Substituting in demand and the reset price, we obtain the contribution of the average *j*-firm to aggregate productivity: $\left[(1 - \frac{\alpha}{2})Z_j + \frac{\alpha}{2}Z_k\right]^{(1-\theta)} = \frac{L^j}{L}\Delta^{(1-\theta)}$
- With flex prices instead, assuming same shares of firms in states j and k we obtain $(1 \frac{\alpha}{2})Z_j^{(1-\theta)} + \frac{\alpha}{2}Z_k^{(1-\theta)} = \frac{L^{ej}}{L^e}(\Delta^e)^{(1-\theta)}$
- With sticky prices aggregate productivity is influenced by prices that reflect averaged costs
- While with flex prices aggregate productivity is influenced by prices reflecting non-averaged idiosyncratic costs

Graphical illustration: zero inflation

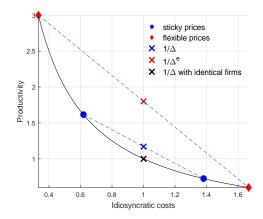


Figure: Zero inflation relative to flex price

< □ > < □ > < □ > < □ > < □ >

Graphical illustration: negative inflation

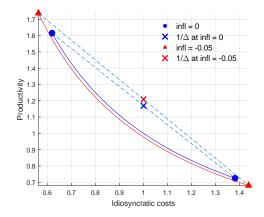
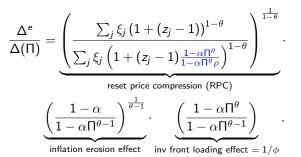


Figure: Negative inflation relative to zero inflation

イロト イヨト イヨト イヨト

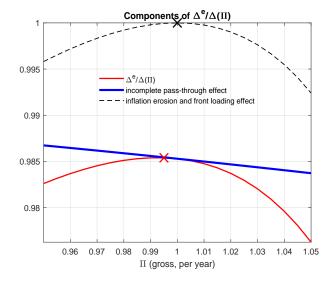
Decomposing the aggregate productivity distortion

Proposition: Consider the limit $\beta \rightarrow 1$ and idiosyncratic shocks that discretize a stationary AR(1) process with persistence $\rho < 1$ using Rouwenhorst (1995). Then, the productivity distortion is given by



With sticky prices, $\alpha > 0$, no inflation rate fully eliminates the productivity distortion.

イロン イ団 とく ヨン イヨン



() $\Delta^{e}/\Delta(\Pi) = 1$ *infeasible* given policy tradeoff from firm-level shocks

② With firm-level shocks, prominent price stability result, $\Pi^* = 1$, fails

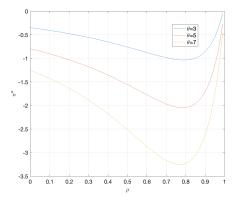
< □ > < □ > < □ > < □ > < □ >

Optimal inflation in Calvo

Consider a sticky-price steady state with firm-level productivity shocks, $\beta \to 1$ and $\frac{1}{1+\tau} \frac{\theta}{\theta-1} = 1$. Then, optimal inflation maximizing steady-state utility is negative,

 $\Pi^{\star} < 1,$

and does not restore efficiency, $\Delta^e/\Delta(\Pi^\star) < 1$.



< □ > < □ > < □ > < □ > < □ >

A generalized-hazard state-dependent pricing model

- Model by Woodford (2011). Has rational inattention microfoundations as shown by Steiner et al. (2017)
- Nests Calvo (1983) pricing and Golosov & Lucas (2007) with fixed menu costs as two polar cases

The equilibrium adjustment probability function takes the following form:

$$\lambda(G) = \frac{\bar{\lambda} \exp(\frac{G}{\xi})}{1 - \bar{\lambda} + \bar{\lambda} \exp(\frac{G}{\xi})}$$
(3)

Parameter	Description	Value	Source
β	Monthly discount	0.9984	Annual real rate of 2%
γ	Intertemporal elast. of subst.	2	Golosov-Lucas (2007)
ζ	Frisch labor supply elast.	1	Ibid
χ	Coefficient on labor disutility	6	Ibid
θ	Elasticity of subst. across varieties	7	Ibid

Idiosyncratic shocks, exogenous and calibrated parameters

Logarithm of idiosyncratic productivity shocks follows

$$a_{jt} = \rho a_{jt-1} + \sigma \epsilon_t, \quad \epsilon_t \sim \mathsf{N}(0,1)$$

Shock process discretized into finite-state Markov process

Table: Estimated parameters

Description	Parameter	Value
Information cost	ξ	1.8370
Menu cost	κ	0.0359
Persistence of productivity shock	ρ	0.8989
Std dev of productivity shock	σ	0.0944

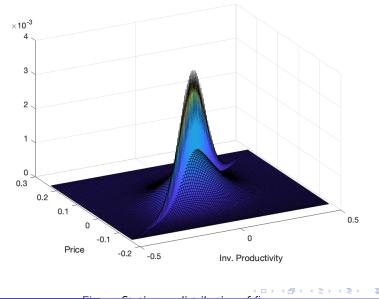
Matched moments

Table: Matched moments

Moment	Data	Model
Frequency of price changes	0.10	0.10
Std of price changes	0.0557	0.0557
Kurtosis of price changes	3.86	3.86
Persistence ρ_{adj}	0.896	0.896

メロト メタト メヨト メヨト

Stationary distribution of firms



Adjustment probability function

Adjustment probability function 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 -0.5 0.1 -0.6 -0.4 0 -0.2 0 0.2 0.4 0.6 Log relative price 0.5 Log (inverse) productivity

Figure: Adjustment probability function in SDP model

A. Nakov and H. Weber

< □ > < □ > < □ > < □ > < □ >

Utility

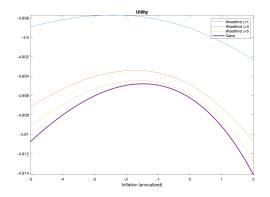


Figure: Inflation and utility in Calvo and Woodford models

- Calvo: $\pi^{\star} = -1.4\%$
- Woodford (2011): $\pi^{\star} = -2\%$
- 30-70 basis points productivity gain vis-a-vis targeting +4% inflation

Conclusions

Pricing models consistent with observed price change heterogeneity imply sizeable misallocation at zero inflation and so a role for monetary policy to reduce it

- Stickiness coupled with idiosyncratic productivity shocks distorts newly set prices thereby reducing aggregate productivity
- \bullet This distortion provides a new motive for choosing negative π^{\star}

Ongoing work

• Study Ramsey optimal policy, transitional dynamics, Ramsey steady state

Recursive representation of aggregate productivity

$$\Delta_t = z' V_t \tag{4}$$

$$V_t = (1 - \alpha) D_t^{\theta} \operatorname{diag}(z'N_t)^{-\theta} \xi + \alpha \Pi_t^{\theta} F V_{t-1}$$
(5)

$$N_t = I_K w_t + \alpha \beta F E_t [\Pi_{t+1}^{\theta} N_{t+1}]$$
(6)

$$D_t = 1 + \alpha \beta E_t [\Pi_{t+1}^{\theta-1} D_{t+1}]$$

$$\tag{7}$$

- V_t is $K \times 1$, N_t is $K \times K$
- F is transition matrix of idiosyncratic shocks
- Π_t is gross inflation
- w_t is wage Back

< □ > < □ > < □ > < □ > < □ >

Aggregation: Price level and recursive pricing rule

Price level

$$P_t^{1-\theta} = \int_0^1 P_{jt}^{1-\theta} \mathrm{dj} \tag{8}$$

Average reset price

$$(P_t^{\star})^{1-\theta} \equiv \frac{1}{1-\alpha} \int_{J_t^{\star}} (P_{jt}^{\star})^{1-\theta} \mathrm{dj}, \qquad (9)$$

where set J_t^{\star} has mass 1-lpha and contains firms that can adjust price in t

$$\frac{P_{jt}^{\star}}{P_t} = \frac{\vartheta}{D_t} z' N_t \xi_{jt}, \qquad (10)$$

$$(p_t^{\star})^{1-\theta} = \left(\frac{\vartheta}{D_t}\right)^{1-\theta} z' N_t \operatorname{diag}(z'N_t)^{-\theta} \xi \tag{11}$$

with $\vartheta = \frac{\theta}{\theta - 1} \frac{1}{1 + \tau}$ \blacktriangleright Slides

イロト イヨト イヨト イヨト

Sketch of proof for optimal inflation being negative

 Π^* maximizes steady state utility. With $\beta \to 1$ and $\frac{\theta}{\theta-1}\frac{1}{1+\tau} = 1$, obtain:

() labor is independent of Π hence maximizing output also maximizes utility

2 $\delta(\Pi) = \mu(\Pi)^{-1}$ hence maximizing output requires maximizing $\delta(\Pi)$

(a) $\delta(\Pi)' = 0$ implies that Π^* fulfills

$$\left(\frac{\Pi-1}{\Pi}\right)\frac{1}{(1-\alpha\Pi^{\theta-1})(1-\alpha\Pi^{\theta})} = \left(\frac{1-\rho}{(1-\alpha\Pi^{\theta}\rho)^2}\right)\frac{\sum_j \xi_j \hat{z}_j \left(1+\hat{z}_j \frac{1-\alpha\Pi^{\theta}}{1-\alpha\Pi^{\theta}\rho}\right)^{-\theta}}{\sum_j \xi_j \left(1+\hat{z}_j \frac{1-\alpha\Pi^{\theta}}{1-\alpha\Pi^{\theta}\rho}\right)^{1-\theta}}.$$
(12)

• sgn{
$$\Pi^{\star}$$
} = sgn{ $\sum_{j} \xi_{j} \hat{z}_{j} \left(1 + \hat{z}_{j} \frac{1 - \alpha \Pi^{\theta}}{1 - \alpha \Pi^{\theta} \rho}\right)^{-\theta}$ } = $-1 \square$ \land slides

イロン イロン イヨン イヨン

References

- Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. *Journal* of *Monetary Economics* 12(3), 383–398.
- Steiner, J., C. Stewart, and F. Matejka (2017). Rational inattention dynamics: Inertia and delay in decision-making. *Econometrica* 85(2), 521–553.