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A paradox: “stickiness” but “jumpiness” of retail prices

A typical supermarket price trajectory is:

I Sticky: it often revisits the exact same nominal values (“price points”)

I Volatile: it frequently makes big jumps between price points

What causes stickiness+volatility? Does it matter for business cycles?
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Existing theories of retail pricing with sales

Several theories of sticky plans with multiple price points

I Multiple menu costs: larger menu cost to change the plan, a smaller one to
jump between price points (Eichenbaum et al, ’11; Álvarez/Lippi ’19)

I Stochastic price discrimination: heterogeneous price elasticities
(Varian ’80; Guimaraes/Sheedy ’11; Kehoe and Midrigan, ’15)

I “Rational inattention”: information processing costs cause randomization
across discrete price points within a plan (Matejka ’16, Stevens ’19)

Issue: we don’t find much evidence of changes between plans.
Instead: sticky price points that are updated one at a time.
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Goal: model sticky+volatile prices, macro implications?

Present evidence on sticky price points vs. sticky plans

Extend our “control cost” (CC) model of sticky prices (JMCB, 2019) to
generate multiple sticky price points

Extend results linking RI with CC (Steiner/Stewart/Matejka 2017)

I Define a computable limited memory RI framework which approximates RI

I Show that the model generates sticky price points

Assess importance of price discrimination vs. costly information

Later: assess importance of this type of pricing for monetary transmission
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Some related literature

State-dependent prices meet microdata
I Golosov/Lucas ’07, Klenow/Malin ’10, Midrigan ’11, Costain/Nakov ’11/’19,

Alvarez/Lippi/Paciello ’12, Nakamura/Steinsson ’15, Cavallo ’18

Stochastic price discrimination and sales
I Varian ’80, Guimaraes/Sheedy ’11

Multiple menu costs and sales
I Eichenbaum et al ’11, Kehoe/Midrigan ’15, Alvarez/Lippi ’19

Discrete logit solutions to rational inattention models
I Matejka/McKay ’15, Steiner/Stewart/Matejka ’17

Rational inattention and sticky prices
I Matejka ’16 (discrete prices), Stevens ’19 (sticky plans)
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Two closely related papers

Stevens ’19: sticky plans
I In her model all prices on the plan change simultaneously; in the data new

price points are introduced one at a time

I Her model is not standard RI – it has two different costs: a fixed cost to
obtain full information and replan, plus the usual flow information cost

Matejka ’16: his choice set is the real line

I Does not specify whether the model is nominal or real

I If real, then he obtains real stickiness, not nominal

I If nominal, then nominal payoffs must be stationary to get nominal stickiness

I Since payoffs are non-stationary in the data, Matejka’s model does not apply

I Our approach: leaving the nominal price unchanged is one possible action
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Outline

1 Microdata
I Hard to find evidence of shifts across plans; instead sticky price points

2 Theory
I CC and RI both give logit solutions
I Equivalence: RI=CC+optimal default distribution: simplifies solution of RI
I RI implies discretization of the choice set into price points

3 Model of sticky price points
I Limited memory version of RI is computable (and gives an extra parameter)
I We define“no change” as a possible action: stationary choice set

4 Numerical findings

I Stickiness of price points caused by costs of information processing

I Volatility across price points driven mainly by customer heterogeneity
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1. Microdata on Price Trajectories
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A closer look at price trajectories

At time t, define backwards and forwards windows for store i , product j :

I Bi,j,t−1
T ≡ set of all prices observed from t − T to t − 1

I F i,j,t+1
T ≡ set of all prices observed from t + 1 to t + T

Classify price changes (Pi,j,t 6= Pi,j,t−1):

I Transitory if Pi,j,t /∈ Bi,j,t−1
T and Pi,j,t /∈ F i,j,t+1

T

I Recurrence if Pi,j,t ∈ Bi,j,t−1
T

I Introduction if Pi,j,t /∈ Bi,j,t−1
T and Pi,j,t ∈ F i,j,t+1

T

Further classify price introductions:

I Type 1: Bi,j,t−1
T ∩ F i,j,t+1

T = ∅, and no recurrences in Bi,j,t−1
T nor F i,j,t+1

T
F Typical of single price policies

I Type 2: Bi,j,t−1
T ∩ F i,j,t+1

T = ∅, and recurrences occur in Bi,j,t−1
T or F i,j,t+1

T
F Typical of sticky plans

I Type 3: Bi,j,t−1
T ∩ F i,j,t+1

T 6= ∅.
F Typical of sticky price points
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Products with frequent type 1/2/3 introductions: US IRi

Type 1 intros:

Type 2 intros:

Type 3 intros:

Classifying price changes: Classifying introductions:
Transitory: green Type 1: squares

Recurrences: blue Type 2: triangles
Introductions: red Type 3: stars
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Frequencies of different price change events

Figure: Histograms of event frequencies, across products (example: store 01250094).

0
1

100

200

0.8

300

1

400

500

0.6 0.8

600

0.6

700

0.4
0.4

0.2
0.2

0 0

0
1

500

1000

0.8 1

1500

0.6 0.8

2000

0.60.4

2500

0.4
0.2

0.2
0 0

1

Each point on the simplex shows frequency Each point on the simplex shows frequency
of transitory/recurrences/introductions for a of type 1/2/3 introductions for a given
given product. Height of bars represents product. Height of bars represents
number of products in each bin. number of products in each bin.

→ Many price changes are recurrences. → Most introductions are Type 3.

Costain and Nakov Control costs and retail sales July 2021 11 / 39



2. Theory: Costly Decision-Making
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Control costs: precise decisions are costly

Making a decision means allocating probability π(a) over the set of
feasible actions a ∈ A.

Control cost (CC) models are full information decisions where
precision is costly:

V (θ) = max
π∈∆(A)

Eπu(a, θ)− κD(π||η). (1)

Here we assume precision is measured by relative entropy:

D(π||η) ≡
∑
a∈A

π(a) ln

(
π(a)

η(a)

)
.

Calibration requires an exogenous “benchmark” action distribution η(a)
that applies if no decision costs are paid.
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Control costs imply weighted logits
Expand out the CC problem:

V (θ) = max
π(a)

∑
a∈A

π(a)u(a, θ)− κ
∑
a∈A

π(a) ln

(
π(a)

η(a)

)
s.t.

∑
a∈A

π(a) = 1 and π(a) ≥ 0, ∀a ∈ A. (2)

FOC for π(a):

u(a, θ)− κ
(

1 + ln

(
π(a)

η(a)

))
− µ = 0,

Yields a weighted multinomial logit (Mattsson/Weibull ’02):

π(a|θ) =
η(a) exp(κ−1u(a, θ))∑

a′∈A η(a′) exp(κ−1u(a′, θ))
. (3)

I Here u may be a static payoff, or it may be the continuation value of a
dynamic problem
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Nested logits: sequencing of choices is irrelevant
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Proposition 1.

Sequence of decisions is irrelevant in dynamic problem:

Choose probability of adjustment, then choose distribution over new prices

Choose distribution over new prices, then choose probability to adjust

Choose simultaneously

Link to Prop. 1 details



Rational inattention: information is costly

Rational inattention (RI) models interpret decision costs in a more specific
way, as a cost of information:

U(πθ(θ)) = max
π(a|θ)∈∆(A)

Eπ(a,θ)u(a, θ)− κI(a; θ) (4)

Here costs depend on mutual information I (a, θ) between the action a and
the state θ:

I(a, θ) ≡ D(p(a, θ)||pa(a)pθ(θ)) =
∑
a∈A

∑
θ∈Θ

π(a, θ) ln

(
π(a, θ)

πa(a)πθ(θ)

)

I Mutual information is a special case of relative entropy
I Mutual information measures deviation from independence
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RI endogenizes the weights in the logit

Rewrite the RI problem in expanded form:

U(πθ(θ)) = max
π(a|θ)∈∆(A)

∑
θ∈Θ

πθ(θ)
∑
a∈A

π(a|θ)

[
u(a, θ)− κ ln

(
π(a|θ)

πa(a)

)]
s.t. πa(a) =

∑
θ∈Θ

π(a|θ)πθ(θ). (5)

Notice:
I the RI problem is just an expectation across various CC problems!
I η(a) = πa(a): optimal “benchmark” is the unconditional action distribution

Therefore the solution is:

π(a|θ) =
πa(a) exp(κ−1u(a, θ))∑

a′∈A πa(a′) exp(κ−1u(a′, θ))
, (6)

πa(a) =
∑
θ∈Θ π(a|θ)πθ(θ). (7)
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Equivalence between RI and CC: static case

Proposition 2.

(Matejka and McKay, 2015). RI problem (4)-(5) represents an expectation
across CC problems under an optimally-chosen benchmark distribution:

U(πθ(θ)) = max
q(a)∈∆(A)

∑
θ∈Θ

πθ(θ) max
π(a|θ)∈∆(A)

∑
a∈A

π(a|θ)

[
u(a, θ)− κ ln

(
π(a|θ)

q(a)

)]
(8)

Therefore, the RI problem is solved by a weighted multinomial logit, with
weights equal to the marginal probabilities of each action:

π(a|θ) =
q(a) exp(κ−1u(a, θ))∑

a′∈A q(a′) exp(κ−1u(a′, θ))
, (9)

q(a) =
∑
θ∈Θ

π(a|θ)πθ(θ). (10)

(9): conditional action probabilities are weighted logits

(10): optimal weights are unconditional action frequencies



Equivalence between RI and CC: Full and Limited Memory

Proposition 3.

(Steiner, Stewart, and Matejka, 2017). A dynamic RI problem with memory of
all previous actions at−1 represents an expectation across dynamic CC problems
under an optimally-chosen benchmark distribution q(at |at−1) at each possible
information set at−1.

Link to proposition details

Proposition 4.

Short-term memory rational inattention (STMRI): A dynamic RI problem
with memory of actions Bt−1

τ in the last τ periods only represents an expectation
across dynamic CC problems under an optimally-chosen benchmark distribution
q(at |Bt−1

τ ) at each limited information set Bt−1
τ .

Link to proposition details



Inferring logit weights from data

Weights on action a ∈ A represent average frequencies conditional on the
information set at−1:

q(a|at−1) =
∑
θt

π(a|θt , at−1)π(θt |at−1)

I Not feasible to infer q(a|at−1) from the data, because we can’t repeatedly
observe each possible information set at−1.

I Exact RI model is hard to identify and hard to compute

But it is simple to infer the weights on average:

q̄(a) =
∑
θt

∑
at−1

π(a|θt , at−1)π(θt , at−1) ≈ sample frequency of a

I Approximate RI model based on average weights is easy to identify and is
feasible to compute
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To infer weights, define a stationary action space

Modelling the action space in a stationary way is crucial

Example: Event Pi,j,t = e3.69 may be rare in the dataset, and may vary a
lot across product, store, time period, and history of actions.

I Hard to infer π(Pi,j,t = e3.69) directly from the data.

Example: Event Pi,j,t 6= Pi,j,t−1 is common in the dataset, and may not vary
much with product, store, time period, and history of actions.

I Might infer π(Pi,j,t 6= Pi,j,t−1) directly from the data.
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Discreteness of RI solution
Necessary conditions for RI action distribution:

π(a|θ) =
q(a) exp(κ−1u(a, θ))∑

a′∈A q(a′) exp(κ−1u(a′, θ))
,

q(a) =
∑
θ∈Θ

πθ(θ)π(a|θ).

But not all actions a are chosen with positive probability.
I Some actions a may have q(a) = π(a|θ) = 0 for all θ.

Proposition 5.

(Fix, 1978). The benchmark distribution q(a) ≥ 0 solves (5) if it satisfies

F (a) ≡
∑
θ∈Θ πθ(θ)

∑
a∈A exp(κ−1u(a, θ))∑

a′∈A q(a′) exp(κ−1u(a′, θ))
≤ 1, (11)

at all a ∈ A, with equality wherever q(a) > 0 strictly.

Must check (11) to see which actions have nonzero probability.
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CC model with memory: multiple sticky price pointsControlling sticky price points

Beginning of t:

…End of t:

𝑣(𝑧, 𝑝, 𝐵)
𝑣(𝑧, 𝑝 , 𝐵)

𝑣(𝑧, 𝑝 , 𝐵)
𝑣(𝑧, 𝑝 , 𝐵)

𝑣(𝑧, 𝑝 , 𝐵)

𝑣(𝑧, 𝑝 , 𝐵)
𝑣(𝑧, 𝑝 , 𝐵)

chosen from 𝑃 ≡ 𝑃\𝐵 chosen from 𝐵 ≡ 𝐵\{𝑝}
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CC model with memory: multiple sticky price points

Let P be a large finite set of real prices, and let η be a distribution over P.

Let BT
t be the real values of the T most recent nominal prices

Value v of option to adjust:

v(p, z ,BT ) = max
λ∈[0,1]

λṽ(p, z ,BT ) + (1− λ)v̂(p, z ,BT )− κwD(λ||λ̄) (12)

Value ṽ of option to choose from BT or not:

ṽ(p, z ,BT ) = max
µ∈[0,1]

µx(z ,P−, η−) + (1− µ)x(z ,B−, β−)− κwD(µ||µ̄) (13)

where : P− = P�BT , and η−(p̃) =
η(p̃)

1− η(BT )
, ∀p̃ ∈ P− (14)

B− = BT�{p}, and β−(p̃) =
#(p̃ ∈ BT )

T −#(p ∈ BT )
, ∀p̃ ∈ B− (15)

Link to neural nets algorithm



CC model with memory: multiple sticky price points

Value x of setting a new price:

x(z ,X , ξ) = max
π∈∆(X )

∑
p̃∈X̃

π(p̃)v̂(p̃, z ,BT )− κwD(π||ξ) (16)

Value v̂ of producing at price p:

v̂(p, z ,BT ) = u(z , p) +
1

1 + r

∑
z′

πz (z ′|z)v(p − i , z ′,BT ′) (17)

Updating price points BT ≡ {b1, b2, . . . bT} as follows:

BT ≡ {p − i , b1 − i , b2 − i , . . . bT−1 − i}

Link to neural nets algorithm



Simulated price trajectories: ε = 7 with memory
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Lots of stickiness

Sometimes previous price points are repeated
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Simulated price trajectories: ε ∈ {3, 11} with memory
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Frequent repetition of previous price points

Markups rise when marginal cost rises
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Some summary statistics and conclusions

Table: Model specifications and simulation results (medians)

Parameterizations: ε = 7 ε = 7 ε = 3, 11 ε = 3, 11
No mem. Mem. No mem. Mem.

Price changes
Adj. frequency (weekly) 0.155 0.138 0.157 0.152

Classifying price changes
Frequency of recurrences 33.3 67.2 40.0 66.2

Freq. of type 3 introductions 75.0 90.9 75.7 93.6
Short-run volatility ratios

Ratio VRavg 0.98 0.95 0.85 1.33
Ratio VRdiff 16.5 17.5 14.1 23.3
Ratio VR reg 1.52 1.68 1.36 2.36
Ratio VRabs 6.8 7.2 5.6 10.4

Decision costs with finite memory helps explain stickiness
(frequent recurrences and frequent Type 3 introductions)

Heterogeneous demand (elasticity 3 vs. 11) helps explain excess volatility
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Some summary statistics and conclusions

Table: Model specifications and simulation results (medians)

Parameterizations: ε = 7 ε = 7 ε = 3, 11 ε = 3, 11
No mem. Mem. No mem. Mem.

Price changes
Adjustment freq. (weekly) 0.155 0.138 0.157 0.152

Classifying price changes
Frequency of recurrences 33.3 67.2 40.0 66.2

Freq. of type 3 introductions 75.0 90.9 75.7 93.6
Short-run volatility ratios

Ratio VRavg (τ) 0.98 0.95 0.85 1.33
Ratio VRdiff (τ) 16.5 17.5 14.1 23.3
Ratio VR reg (τ) 1.52 1.68 1.36 2.36
Ratio VRabs(τ) 6.8 7.2 5.6 10.4

Decision costs with finite memory helps explain stickiness
(frequent recurrences and frequent Type 3 introductions)

Heterogeneous demand (elasticity 3 vs. 11) helps explain excess volatility
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Some summary statistics and conclusions

Table: Model specifications and simulation results (medians)

Parameterizations: ε = 7 ε = 7 ε = 3, 11 ε = 3, 11
No mem. Mem. No mem. Mem.

Price changes
Adjustment freq. (weekly) 0.155 0.138 0.157 0.152

Classifying price changes
Frequency of recurrences 33.3 67.2 40.0 66.2

Freq. of type 3 introductions 75.0 90.9 75.7 93.6
Short-run volatility ratios

Ratio VRavg (τ) 0.98 0.95 0.85 1.33
Ratio VRdiff (τ) 16.5 17.5 14.1 23.3
Ratio VR reg (τ) 1.52 1.68 1.36 2.36
Ratio VRabs(τ) 6.8 7.2 5.6 10.4

Decision costs with finite memory helps explain stickiness
(frequent recurrences and frequent Type 3 introductions)

Heterogeneous demand (elasticity 3 vs. 11) helps explain excess volatility
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Conclusions

Explaining nominal stickiness:
I Decision costs help explain intermittent nominal price adjustment
I Finite memory helps explain recurrence of previous nominal prices
I Price discrimination needed to explain excess short-run volatility

Computing models of costly decisions
I In general, rational inattention models are hard to compute
I We defined short-term memory rational inattention (STMRI)
I Showed how STMRI can be computed using neural networks
I Defining a realistic, stationary action set makes it possible to identify model

parameters

RI can only be tested jointly with a hypothesis about the nature of the
action set

I With an arbitrary action set, RI does not generate nominal stickiness
I STMRI, on a realistic action set, can explain nominal stickiness,

including retail sales behavior
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Thanks for your (costly) attention!
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APPENDIX: Detailed propositions
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Invariance to decision sequence

A convenient fact about the relative entropy cost function
is that decisions are invariant to changes in sequencing, if benchmark
distributions are appropriately defined.

Proposition 1.

Let V (θ;A, η) be the value of (1) with choice set A and benchmark distribution η.

Split up the action set A into a partition A0 ≡ {B1,B2...,Bn}.
Define η0(Bi ) ≡

∑
a∈Bi

η(a), and ξi (a) ≡ η(a)/η0(Bi ) for each a ∈ Bi .

Consider the two-step CC problem:

V 0(θ;A0, η0) = max
π0∈∆(A0)

Eπ0V (θ;B, ξ)− κD(π0||η0). (18)

Two-step problem (18) has the same solution as the one-step problem (1).

Back to main presentation



Equivalence between RI and CC: dynamic case

Proposition 3.

(Steiner, Stewart, and Matejka, 2017). Consider a dynamic RI problem:

U(a0) = max
π(at |θt ,at−1)∈∆(A)

E

[ ∞∑
t=1

δt
(
u(at , θt)− κI(at , θ

t |at−1)
)∣∣∣∣∣ a0

]
. (19)

(i.) Problem (19) is equivalent to the following double optimization:

U(a0) = max
π,q

E

[ ∞∑
t=1

δt

(
u(at , θt)− κ log

(
π(at |θt , at−1)

q(at |at−1)

))∣∣∣∣∣ a0

]
. (20)

(ii.) Problem (20) represents an expectation across full-info CC problems under
an optimal benchmark distribution q:

U(at−1) = δ max
q(a|at−1)∈∆(A)

∑
θt

π(θt |at−1)V (θt ; at−1, q). (21)

(Continues)



Equivalence between RI and CC: dynamic case (continued)

Proposition 3.

(iii.) In (21), V (θt ; at−1, q) is the value of a recursive, full-info CC problem:

V (θt ; at−1, q) = max
π(at |θt ,at−1)∈∆(A)

∑
at∈A

π(at |θt , at−1)

[
u(at , θt ) . . .

−κ ln

(
π(at |θt , at−1)

q(at |at−1)

)
+ δ

∑
θt+1

π(θt+1|θt )V (θt+1; at , q)

 . (22)

(iv.) Hence, (19) and (22) are solved by a weighted multinomial logit:

π(at |θt , at−1) =
q(at |at−1) exp(κ−1v̂(at , θt ; at−1, q))∑

a′∈A q(a′|at−1) exp(κ−1v̂(a′, θt ; at−1, q))
, (23)

where v̂(at , θ
t ; at−1, q) ≡ u(at , θt ) + δ

∑
θ′
π(θ′|θt )V (θ′; at , q). (24)

(v.) The optimal q is the marginal distribution, conditional on signals observed:

q(at |at−1) =
∑
θt

π(at |θt , at−1)π(θt |at−1). (25)

Back to main presentation
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Equivalence between STMRI and CC

Proposition 4.

Consider a short-term memory rational inattention (STMRI) problem:

U(B0
τ ) = max

π(at |θt ,Bt−1
τ )∈∆(A)

E

[ ∞∑
t=1

δt
(
u(at , θt)− κI(at , θ

t |Bt−1
τ )

)∣∣∣∣∣B0
τ

]
. (26)

(a.) The results of Prop. 3 concerning the unlimited memory RI problem (19)
extend to the STMRI problem (26). In particular, (26) is solved by a weighted
multinomial logit:

π(at |θt ,Bt−1
τ ) =

q(at |Bt−1
τ ) exp(κ−1v̂(at , θt ;Bt−1

τ ))∑
a′∈A q(a′|Bt−1

τ ) exp(κ−1v̂(a′, θt ;Bt−1
τ ))

, (27)

where
q(at |Bt−1

τ ) =
∑
θt

π(at |θt ,Bt−1
τ )π(θt |Bt−1

τ ), (28)

and v̂ is derived from the value function of a dynamic CC problem, as in (24).

(b.) As memory increases (τ →∞), the probabilities and value functions that
solve the STMRI problem (26) converge to the solution of the unlimited memory
RI problem (19).

Back to main presentation



How to calibrate the benchmark parameters?
1 Exogenous uniform benchmark (Costain/Nakov ’19):

I Benchmark hazard λ̄ is a constant to be estimated
I P is a uniform grid of log real prices
I The benchmark distribution η is uniform on P

2 Empirical RI-CC hybrid:
In this paper, we instead set the benchmarks equal to their sample
averages in the data.
Consider a subset of products I that appear to follow single price policies,
that is, they only display Type-1 price introductions.

I λ̄t = λ̄ = sample average adjustment frequency in set I .
I η̃t(p) = η̃(p) = average histogram, across products in set I , of newly-set

log prices, as deviations from product-specific mean.

To calculate η̃(p):
1 Find the vector of all new nominal prices Pi,j,t chosen for a given product i ;
2 Calculate the product-specific mean P̄i ;
3 Demean the prices to obtain pi,j,t = log(Pi,j,t/Pt) at all times t such that the

price of product i changed at store j ;
4 Aggregate the histograms of prices pi,j,t across all products i ∈ I .
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Neural nets algorithm: various options

0. Estimate unconditional 
benchmark distributions (� )  

and (� ) from data
λ̄, η̄(p)

λ̄, μ̄, q̄(p)

1. Compute CC value function v, 
without memory, on grid, with 

benchmark distribution (� ) λ̄, η̄(p)

2. Compute CC value function v, 
without memory, as neural net, with 

benchmark distribution (� ) λ̄, η̄(p)

2A. Given v, compute 
Blahut-Arimoto price 

distribution �  η*(p)

2B. Compute CC value function v, 
without memory, as neural net, with 
benchmark distribution (� ) λ̄, η*(p)

3. Compute CC value function v, with 
memory � , as neural net, with 

benchmark distribution (� ) 
τ

λ̄, μ̄, q̄(p)

3A. Given v, compute 
Blahut-Arimoto price 

distribution �  q*(p)

3B. Compute CC value 
function v, with memory � , as neural net, 
with benchmark distribution (� ) 

τ
λ̄, μ̄, q*(p)

4. Increase � 
τ
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