Optimal Monetary Policy with $r^* < 0$

Roberto Billi Jordi Galí Anton Nakov

June 2023
Motivation

- Widespread consensus on a secular decline in the natural rate of interest (r^*)
- With a ZLB constraint: increased incidence of binding ZLB episodes, greater macro instability
- Existing literature: optimal monetary policy under a ZLB constraint and a positive mean natural rate ($r^* > 0$). Normal times: $r^n_t > 0 \Rightarrow i_t > 0$, successful stabilization of inflation and the output gap. Occasional dips of $r^n_t < 0 \Rightarrow i_t = 0$, macro instability. Key role for forward guidance.
- *This paper*: optimal monetary policy under a ZLB constraint with $r^* < 0$. "New normal": $r^n_t < 0$. Occasional episodes with $r^n_t > 0$. Summers’ "secular stagnation" speech.

What does the optimal monetary policy look like in that environment?

What are its implications for macro outcomes?
Outline

- The optimal monetary policy problem
- Equilibrium under the optimal policy: The case of a constant natural rate
- Fluctuations in response to natural rate shocks.
- Implementation
- Concluding remarks
Related Literature

- Optimal monetary policy under the ZLB: Eggertsson and Woodford (2003), Jung, Teranishi and Watanabe (2005), Adam and Billi (2006), Nakov (2008), who analyze the problem of optimal policy under commitment in the basic New Keynesian model with a ZLB constraint.

- Optimal choice of an inflation target, conditional on a given interest rate rule: Coibion et al. (2012), Bernanke et al. (2019), and Andrade et al. (2020, 2021).

The Optimal Monetary Policy Problem

\[
\min \frac{1}{2} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\pi_t^2 + \vartheta y_t^2 \right)
\]

subject to

\[
\pi_t = \beta \mathbb{E}_t \{ \pi_{t+1} \} + \kappa y_t \tag{1}
\]

\[
y_t = \mathbb{E}_t \{ y_{t+1} \} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \{ \pi_{t+1} \} - r^n_t) \tag{2}
\]

\[
i_t \geq 0 \tag{3}
\]

\[
r^n_t = r^* + z_t \tag{4}
\]

all for \(t = 0, 1, 2, \ldots \) where \(z_t \sim AR(1) \) and

\[
r^* < 0
\]
A Brief Detour: A Microfounded NK Model with $r^* < 0$

- Based on the NK-OLG model in Galí (AEJM, 2021)
- Consumers: constant "life" and "activity" survival rates (γ, υ). Objective function for consumer born in period s:
 \[
 \mathbb{E}_s \sum_{t=s}^{\infty} (\beta \gamma)^{t-s} Z_t \log C_t | s
 \]
 where $\beta \equiv \exp\{-\rho\}$ and $z_t \equiv \log Z_t \sim AR(1)$
- Firms: attached to founder, hence survival rate $\gamma \upsilon$. Calvo pricing.
- Steady state:
 \[
 r^* = \rho + \log \upsilon
 \]
- Condition for $r^* < 0$
 \[
 \upsilon < \beta
 \]
- Linearized equilibrium conditions:
 \[
 \pi_t = \beta \gamma \mathbb{E}_t\{\pi_{t+1}\} + \kappa y_t
 \]
 \[
 y_t = \mathbb{E}_t\{y_{t+1}\} - (i_t - \mathbb{E}_t\{\pi_{t+1}\} - r^n_t)
 \]
 with $r^n_t = r^* + (1 - \rho_z)z_t$
The Optimal Monetary Policy Problem

\[\min \frac{1}{2} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\pi_t^2 + \vartheta y_t^2 \right) \]

subject to

\[\pi_t = \beta \mathbb{E}_t \{ \pi_{t+1} \} + \kappa y_t \]

\[y_t = \mathbb{E}_t \{ y_{t+1} \} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \{ \pi_{t+1} \} - r_t^n) \]

\[i_t \geq 0 \]

\[r_t^n = r^* + z_t \]

all for \(t = 0, 1, 2, \ldots \) where \(z_t \sim AR(1) \) and

\[r^* < 0 \]
The Optimal Monetary Policy Problem

Optimality conditions:

\[\pi_t = \xi_{1,t} - \xi_{1,t-1} + \beta^{-1} \xi_{2,t-1} \]
\[\vartheta y_t = -\kappa \xi_{1,t} - \sigma \xi_{2,t} + \sigma \beta^{-1} \xi_{2,t-1} \]
\[\xi_{2,t} \geq 0 \]
\[\xi_{2,t} \left[r_t^n + \mathbb{E}_t \{ \pi_{t+1} \} + \sigma (\mathbb{E}_t \{ y_{t+1} \} - y_t) \right] = 0 \]

with initial conditions \(\xi_{1,-1} = \xi_{2,-1} = 0 \).
Optimal Policy: The Case of a Constant Natural Rate

- **Assumption**

 \[r^n_t = r^* < 0 \]

- **Steady State**

 \[\pi = \beta^{-1} \xi_2 \geq 0 \]

 \[\vartheta y = -\kappa \xi_1 + \sigma (\beta^{-1} - 1) \xi_2 \]

 \[\xi_2 \geq 0 \quad ; \quad r^* + \pi \geq 0 \]

 \[\xi_2 (r^* + \pi) = 0 \]

- **Intuition:** \(\pi = -r^* \) is the closest to zero that the CB can achieve in the long run
Optimal Policy: The Case of a Constant Natural Rate

- Transitional dynamics

\[\hat{\pi}_t = \beta \hat{\pi}_{t+1} + \kappa \hat{y}_t \]
\[\hat{\pi}_t = \hat{\xi}_{1,t} - \hat{\xi}_{1,t-1} + \beta^{-1} \hat{\xi}_{2,t-1} \]
\[\vartheta \hat{y}_t = -\kappa \hat{\xi}_{1,t} - \sigma \hat{\xi}_{2,t} + \sigma \beta^{-1} \hat{\xi}_{2,t-1} \]
\[\hat{\xi}_{2,t} + \xi_2 \geq 0 \]
\[\hat{\pi}_{t+1} + \sigma (\hat{y}_{t+1} - \hat{y}_t) \geq 0 \]
\[(\hat{\xi}_{2,t} + \xi_2) [\hat{\pi}_{t+1} + \sigma (\hat{y}_{t+1} - \hat{y}_t)] = 0 \]

for \(t = 0, 1, 2, \ldots \) with initial conditions \(\hat{\xi}_1,_{t-1} = -\xi_1 \) and \(\hat{\xi}_2,_{t-1} = -\xi_2 \) and such that \(\lim_{t \to \infty} \hat{x}_t = 0 \) for \(\hat{x}_t \in \{ \hat{\pi}_t, \hat{y}_t, \hat{\xi}_{1,t}, \hat{\xi}_{2,t} \} \)

- Simulations for a calibrated economy

\(\sigma = 1, \beta = 0.99, \kappa = 0.1717, \vartheta = 0.0191 \) (Galí (2015))
\(r = -0.0025 \)
Transitional dynamics under the optimal monetary policy
Fluctuations in Response to Natural Rate Shocks

- Stochastic equilibrium

\[
\hat{\pi}_t = \beta \mathbb{E}_t \{ \hat{\pi}_{t+1} \} + \kappa \hat{y}_t
\]

\[
\hat{\pi}_t = \hat{\xi}_{1,t} - \hat{\xi}_{1,t-1} + \beta^{-1} \hat{\xi}_{2,t-1}
\]

\[
\vartheta \hat{y}_t = -\kappa \hat{\xi}_{1,t} - \hat{\xi}_{2,t} + \beta^{-1} \hat{\xi}_{2,t-1}
\]

\[
\hat{\xi}_{2,t} + \xi_2 \geq 0
\]

\[
\sigma(\mathbb{E}_t \{ \hat{y}_{t+1} \} - \hat{y}_t) + \mathbb{E}_t \{ \hat{\pi}_{t+1} \} + z_t \geq 0
\]

\[
[\hat{\xi}_{2,t} + \xi_2] \sigma(\mathbb{E}_t \{ \hat{y}_{t+1} \} - \hat{y}_t) + \mathbb{E}_t \{ \hat{\pi}_{t+1} \} + z_t = 0
\]

for \(t = 0, 1, 2, \ldots \) with initial conditions given by \(\hat{\xi}_{1,-1} = 0 \) and \(\hat{\xi}_{2,-1} = 0 \).

- Simulations

\((\rho_z, \sigma_z) = (0.5, 0.0025) \)
Aggregate fluctuations under the optimal monetary policy

Real Rate

Policy Rate

Inflation

Output Gap

Roberto Billi, Jordi Galí, Anton Nakov
Aggregate fluctuations with higher shock volatility

Roberto Billi, Jordi Galí, Anton Nakov

Optimal Monetary Policy with $r^* < 0$

June 2023
ZLB incidence as a function of r^*
Average inflation as a function of r^*
Inflation volatility as a function of r^*

![Graph showing the relationship between inflation volatility and r^*]
Roberto Billi, Jordi Galí, Anton Nakov
Optimal Monetary Policy with $r^* < 0$
June 2023

Precautionary Inflation

![Graph showing Precautionary Inflation](image-url)
Region of near permanent ZLB

Permanent ZLB

Roberto Billi, Jordi Galí, Anton Nakov

Optimal Monetary Policy with $r^* < 0$

June 2023 19 / 25
Equilibrium outcomes under optimal policy: \((i^*_t, y^*_t, \pi^*_t)\)

Candidate rule:

\[i_t = i^*_t \]

for all \(t\). Combined with non-policy block \(\Rightarrow\) multiplicity of solutions in addition to \((i^*_t, y^*_t, \pi^*_t)\)

\(\Rightarrow\) wanted: policy rule that guarantees \((i^*_t, y^*_t, \pi^*_t)\) is the only equilibrium.
Optimal Policy: Implementation

- Proposed rule: \(i_t = i^*_t + \phi^{(i)}_{\pi} \tilde{\pi}_t + \phi^{(i)}_{y} \tilde{y}_t \geq 0 \)

\[
\begin{cases}
\phi^{(1)}_{\pi} > 0, & \phi^{(1)}_{y} > 0 \text{ if } \tilde{\pi}_t \geq 0 \text{ and } \tilde{y}_t \geq 0 \ (\text{regime 1}) \\
\phi^{(2)}_{\pi} < 0, & \phi^{(2)}_{y} < 0 \text{ if } \tilde{\pi}_t < 0 \text{ and } \tilde{y}_t < 0 \ (\text{regime 2}) \\
\phi^{(3)}_{\pi} > 0, & \phi^{(3)}_{y} < 0 \text{ if } \tilde{\pi}_t \geq 0 \text{ and } \tilde{y}_t < 0 \ (\text{regime 3}) \\
\phi^{(4)}_{\pi} < 0, & \phi^{(4)}_{y} > 0 \text{ if } \tilde{\pi}_t < 0 \text{ and } \tilde{y}_t \geq 0 \ (\text{regime 4})
\end{cases}
\] (13)

- Non-policy block, in deviations from optimal path:

\[
\tilde{\pi}_t = \beta \mathbb{E}_t \{ \tilde{\pi}_{t+1} \} + \kappa \tilde{y}_t
\] (14)

\[
\tilde{y}_t = \mathbb{E}_t \{ \tilde{y}_{t+1} \} - \frac{1}{\sigma} (\tilde{i}_t - \mathbb{E}_t \{ \tilde{\pi}_{t+1} \})
\] (15)

where \(\tilde{i}_t \equiv i_t - i^*_t \)
Regime switching model representation

\[
\begin{bmatrix}
\tilde{y}_t \\
\tilde{\pi}_t
\end{bmatrix} = A_t \begin{bmatrix}
\mathbb{E}_t\{\tilde{y}_{t+1}\} \\
\mathbb{E}_t\{\tilde{\pi}_{t+1}\}
\end{bmatrix}
\]

where \(A_t \) takes values

\[
A^{(i)} \equiv \frac{1}{\sigma - \phi_y^{(i)} - \kappa\phi_{\pi}^{(i)}} \begin{bmatrix}
\sigma & 1 + \beta\phi_{\pi}^{(i)} \\
\sigma\kappa & \kappa + \beta(\sigma - \phi_y^{(i)})
\end{bmatrix}
\]

where \(i = 1, 2, 3, 4 \)
A benchmark regime switching model

\[x_t = A_t \mathbb{E}_t \{ x_{t+1} \} \] \hspace{1cm} (16)

where \(x_t \) is an \((n \times 1)\) vector of non-predetermined variables and \(A_t \) is an \((n \times n)\) non-singular matrix. Assume \(A_t \in \mathcal{A} \equiv \{ A^{(1)}, A^{(2)}, \ldots, A^{(Q)} \} \).

Goal: establish sufficient conditions on \(\mathcal{A} \) that guarantee that \(x_t = 0 \) all \(t \) is the only bounded solution to (16), i.e. \(\lim_{T \to +\infty} \mathbb{E}_t \{ \| x_{t+T} \| \} > M \| x_t \| \) for any \(M > 0 \) and \(x_t \neq 0 \), and where \(\| \cdot \| \) is the usual \(L^2 \) norm.

Define \(\| A^{(q)} \| \equiv \max_x \| A^{(q)} x \| \) subject to \(\| x \| = 1 \). In addition, \(\alpha \equiv \max\{ \| A^{(1)} \|, \| A^{(2)} \|, \ldots, \| A^{(Q)} \| \} > 0 \).

Theorem [sufficient condition for determinacy]: If \(\alpha < 1 \), then \(x_t = 0 \) for all \(t \) is the only bounded solution to (16)
Determinacy Regions

$q = 3$:
\[\tilde{\pi}_t \geq 0, \tilde{y}_t < 0 \]

$q = 1$:
\[\tilde{\pi}_t \geq 0, \tilde{y}_t \geq 0 \]

$q = 2$:
\[\tilde{\pi}_t < 0, \tilde{y}_t < 0 \]

$q = 4$:
\[\tilde{\pi}_t < 0, \tilde{y}_t \geq 0 \]
Concluding remarks

- Optimal monetary policy with a ZLB constraint and $r^* < 0$.

- The optimal policy aims to approach *gradually* a steady state with positive average inflation and a binding ZLB.

- Around that steady state, inflation and the output gap display (second-best) fluctuations in response to shocks. Those fluctuations coexist with a nominal rate that remains at its ZLB most (or all) of the time.

- The central bank can implement the optimal policy as a (locally) unique equilibrium by means of an appropriate state-contingent rule.

- In order to establish that result, we derive a sufficient condition for local determinacy in a general model with endogenous regime switches, a finding that may be of interest beyond the problem studied in the present paper.