000	0	00000000000	00000000	0	000000000000	

Effectiveness and Addictiveness of Quantitative Easing

Peter Karadi and Anton Nakov

ECB and CEPR

July 2020

The views expressed here are personal and do not reflect any official ECB views.

Overview •00			

Motivation

- Central banks around the world have built up large balance sheets
- How effective is QE in fighting crises?
- How persistent should QE policies be?
- How to use QE in the future?

Overview 0●0			

This paper

- Optimal QE policy in a dynamic general equilibrium model
 - Featuring banks with balance sheet constraints that bind occasionally following Gertler and Karadi (2013)
- Financial shock reduces bank equity
- Full commitment Ramsey problem

Overview 00●				
Finding	gs			

- QE can be very effective in response to financial shocks
- Optimal QE is very persistent (ho pprox 1)
 - Banks rebuild balance sheets slowly when premia are low
 - Slack constraints can become binding if exit is quicker
- Future use of QE
 - after large financial shocks
 - after very large non-financial shocks (that trigger the ELB)
 - may be ineffective for small non-financial shocks

Related literature

- QE in DSGE models
 - Gertler and Karadi (2011); Carlstrom, Fuerst and Paustian (2017); Harrison (2017); Darracq-Paries and Kuehl (2017)
 - In our model QE is not always effective
- QE policy
 - Gertler and Karadi (2011): simple rules
 - ► Harrison (2017): discretionary optimization
 - We study optimal commitment

	Model ●୦୦୦୦୦୦୦୦୦		

Overview

- Dynamic general equilibrium model
 - Representative family with consumption habits
 - Intermediate good producers with credit demand
 - Capital producers with investment adjustment costs
 - Retailers with Calvo pricing
- Balance sheet constrained financial intermediaries
- Central bank follows interest rule and QE policy

Financial Intermediaries

- Subject to agency problem as in Gertler and Karadi (2011)
- Assets
 - Loans s_t to firms (at price Q_t)
 - Hold government bonds b_t (at price q_t)
- Liabilities
 - Net worth n_t : retained earnings and equity issuance ξ_t
 - Deposits limited by agency friction
- Survive with probability σ , maximize expected net worth at exit

Agency problem

- Bankers can run away with fraction heta of loans and $\Delta heta$ of gov't bonds
 - Depositors limit their deposits (bank leverage) to prevent default
- Aggregate leverage with occasionally binding constraint

$$\phi_t \equiv \frac{Q_t S_{pt} + \Delta q_t B_{pt}}{N_t} \le \overline{\phi}_t$$

where S_{pt} and B_{pt} are banks' aggregate asset holdings and $\overline{\phi}_t$ is an endogenous maximum leverage ratio.

• Δ determines the weight of government bonds

Agency problem, cont.

• Aggregate net worth evolves as

$$N_{t} = \sigma \left[(R_{kt} - R_{t})Q_{t-1}S_{pt-1} + (R_{bt} - R_{t})q_{t-1}B_{pt-1} + R_{t}N_{t-1} + \xi_{t-1}N_{t-1} \right] + \omega_{t},$$

where $R_{it} - R_t$, i = k, b are excess returns, σ is the banks' survival probability and ω_t is start-up funds.

- Implications
 - ▶ 1σ can be interpreted as proportional dividend payout
 - Banks' net worth growth is high when excess returns are high (credit is scarce) and low when credit is abundant.

Household Asset Holdings

- Households can buy long-term gov't bonds subject to transactions costs
 - Gov't bonds holding cost: $\frac{1}{2}\kappa(B_{ht}-\overline{B}_h)^2$ for $B_{ht} \geq \overline{B}_h$
- Household asset demand:

$$B_{ht} = \overline{B}_h + \frac{E_t \Lambda_{t,t+1} (R_{bt+1} - R_{t+1})}{\kappa}$$

• Elasticity $\kappa > 0$

Determines the level of financial frictions in the economy

	Model 00000●00000		

Credit policy

• Reduces private holdings of long-term government bonds

Banks

- Can offload part of their government bond holdings
- This relaxes their balance-sheet constraint
- They extend extra credit to the private sector
- Laxer credit conditions reduce excess returns and stimulate economy
- > This raises asset prices and improves banks' balance sheets further

Overview		Model				
000	0	00000000000	0000000	0	00000000000	

Credit policy, cont.

- Households
 - Sell part of their bond holdings due to lower excess returns
 - Depending on κ this can reduce the effectiveness of QE policy

Credit Policy Trade-off

- The central bank faces quadratic efficiency cost of QE

 τ(*q*_t*B*_{g,t})²
- Central bank is not balance-sheet constrained!

	re Model				
000 0	0000000000	0000000	0	0000000000	0

Central bank

Sets QE to maximize household welfare

$$E_t \sum_{i=0}^{\infty} \beta^i \left[\ln(C_{t+i} - hC_{t+i-1}) - \frac{\chi}{1+\varphi} L_{t+i}^{1+\varphi} \right]$$

subject to the optimizing behavior of the private sector (households, firms, banks) under full commitment

Central bank, cont.

• Follows the Taylor rule

$$\exp\{i_t\} = \exp\{i_{t-1}\}^{\rho_i} \left[R^* \left(\frac{\Pi_t}{\Pi^*}\right)^{\kappa_{\pi}} \left(\frac{Y_t}{Y^*}\right)^{\kappa_{Y}}\right]^{1-\rho_i}$$
subject to
$$i_t \ge 0$$

Deterministic steady state is efficient

• Subsidy offsets steady-state monopolistic distortion (Woodford, 2011)

- Financial constraints loose in steady-state
 - Steady-state equity buffer $N > N^*$
 - Motivated by precautionary behavior or by regulation
- Optimal QE is zero in steady-state

	Results ●0000000		

Results

- Model is calibrated to Euro Area based on estimated parameters of Coenen, Karadi, Schmidt and Warne (2018)

 Parameters
- Impact of QE

Optimal costless QE

- Financial shock $(e_{\omega,t})$ reduces banks' net worth
- Optimal policy is (piecewise) linear in the 'net worth gap'

$$\Gamma_{t} = \begin{cases} \frac{\bar{\phi}}{\Delta} (N^{*} - N_{t}) & \text{if } N_{t} \leq N^{*} \\ 0 & \text{otherwise} \end{cases}$$

- Optimal policy is more aggressive
 - The higher the maximum leverage $\bar{\phi}$ (more 'missing' credit)
 - The lower the bonds' weight (less BS relaxation)

- Relaxes banks' balance sheet constraints, so that banks can fully satisfy credit demand
- Fully offsets the financial shock (effectiveness)
 - Banks' balance sheet constraints remain loose
 - Excess returns are fully eliminated
 - Output at its first best, inflation is zero

• Addictiveness due to slow recapitalization of the banking sector

$$N_t = \sigma R N_{t-1} + \omega_t,$$

- Because excess returns are zero
- Persistence depends on σR (close to 1): dividend payouts

• Path of optimal QE: AR(1) with a drift (Φ) while positive

$$qB_{gt}^{*} = \begin{cases} \sigma R \left(qB_{gt-1}^{*} \right) - \Phi - \frac{\bar{\phi}}{\Delta} e_{\omega,t} & \text{if } N_{t} \leq N^{*} \\ 0 & \text{otherwise} \end{cases}$$

•
$$\Phi = (1 - \sigma R) \frac{\overline{\phi}}{\Delta} (N - N^*)$$

Mirrors the slow recapitalization of the banking sector

• Alternative implementation • Simple rule

$$\Gamma_t = \nu_R \left(R_{k,t} - R_t \right)$$

as $\nu_R \uparrow \infty$

	Results		
	00000000		

Robustness

- Gradual exit is optimal under
 - Positive QE costs (gradual entry)
 - Optimal interest rate setting
 - Lower equity issuance costs
 - Higher steady-state equity buffers

Non-financial downturn

- Downturn caused by savings' preference shock (β_t)
 - Shock large enough to bring interest rate to its lower bound
 - QE is ineffective: interest rate easing appreciates asset prices, financial constraints remain slack
 - ► For a severe enough shock: QE becomes effective

		Conclusion	

Conclusion

- We study a model with banks facing occasionally binding balance sheet constraints
- QE can be very effective in response to financial shocks
- Optimal QE is very persistent (addictive)
- Use QE in response to
 - Large financial shocks
 - Very large non-financial shocks

					Figures	
000	0	0000000000	00000000	0	00000000000	

Parameters

Table: Parameter values

		Households
β	0.995	Discount rate
h	0.62	Habit parameter
χ	35	Relative utility weight of labor
B/Y	0.700	Steady state Treasury supply
ρ	0.97	Geometric decay of government bond
\overline{B}^h/B	0.75	Proportion of long term Treasury holdings of the HHs
κ	0.009	Portfolio adjustment cost
φ	2	Inverse Frisch elasticity of labor supply
		Financial Intermediaries
θ	0.166	Fraction of capital that can be diverted
Δ	0.83	Proportional advantage in absconding rate of government debt
ω	0.067	Transfer to the entering bankers
σ	0.972	Survival rate of the bankers
ζ	28	Parameter of cost of equity issuance
		Intermediate good firms
α	0.36	Capital share
δ	0.025	Depreciation rate

Overview			Figures	
			00000000000	

Parameters, cont.

	Capital Producing Firms					
η_i	5.17	Inverse elasticity of investment to the price of capital				
	Retail Firms					
e	3.86	Elasticity of substitution				
γ_P	0.92	Probability of keeping the price constant				
$\gamma_{P,-1}$	0.23	Price indexation parameter				
		Government				
G	0.200	Steady state proportion of government expenditures				
τ	0.01 basis point	Cost of QE				

Fed Balance Sheet and Corporate Spreads

ECB Balance Sheet and Corporate Spreads

		Figures	
		00000000000	

Responses to QE with and without the ZLB

		Figures	
		00000000000	

Responses to a financial shock under different QE rules

Karadi and Nakov (ECB & CEPR) Effectiveness and Addictiveness of QE

		Figures	
		000000000000	

Costless versus costly QE

		Figures	
		000000000000	

Optimal joint interest rate and QE response

Karadi and Nakov (ECB & CEPR) Effectiveness and Addictiveness of QE

		Figures	
		000000000000	

Welfare effects of QE

		Figures	
		000000000000	

Responses to a savings' preference shock

Karadi and Nakov (ECB & CEPR) Effectiveness and Addictiveness of QE

		Figures 000000000000000	

Robustness to equity issuance costs

		Figures	
		000000000000	

Robustness to steady state equity buffer

Karadi and Nakov (ECB & CEPR) Effectiveness and Addictiveness of QE

			References

References I

- Carlstrom, Charles T, Timothy S Fuerst, and Matthias Paustian (2017) "Targeting Long Rates in a Model with Segmented Markets," *American Economic Journal: Macroeconomics*, Vol. 9, pp. 205–42.
- Coenen, Guenter, Peter Karadi, Sebastian Schmidt, and Anders Warne (2018) "The New Area-Wide Model II: An Extended Version of the ECB's Micro-Founded Model for Forecasting and Policy Analysis with a Financial Sector," Working Paper Series 2200, European Central Bank.
- Darracq-Paries, Matthieu and Michael Kuehl (2017) "The Optimal Conduct of Central Bank Asset Purchases," Discussion Papers 22/2017, Deutsche Bundesbank.
- Gertler, Mark and Peter Karadi (2011) "A Model of Unconventional Monetary Policy," *Journal of Monetary Economics*, Vol. 58, pp. 17–34.
 - (2013) "QE 1 vs. 2 vs. 3...: A Framework for Analyzing Large-Scale Asset
 Purchases as a Monetary Policy Tool," *International Journal of Central Banking*, Vol. 9, pp. 5–53.
- Harrison, Richard (2017) "Optimal Quantitative Easing," Bank of England working papers 678, Bank of England.
- Woodford, Michael (2011) Interest and Prices: Foundations of a Theory of Monetary Policy: Princeton University Press.

Karadi and Nakov (ECB & CEPR)