Precautionary price stickiness

J. Costain and A. Nakov

Banco de España, ECB

February 2011

Anton Nakov (BdE & ECB)

Precautionary price stickiness

Feb 2011 1 / 57

(3)

Many individual prices are "sticky"

Figure 1: The Price of Fleischmann's Margarine⁽ⁱ⁾

Source: Campbell and Eden (2010)

Motivating questions

- What causes the "stickiness" of individual prices?
- Obes the rigidity of individual prices matter for aggregate business cycle fluctuations?

Implications for macroeconomic performance and for policy

Existing explanations

- 1. Why are prices sticky? Technological constraints:
- "Menu" costs of changing price tags
 - Fixed
 - Stochastic
 - Calvo: 0 with prob. p, and ∞ with prob. (1-p)
- "Observation" or "information" costs

A B A A B A

Existing explanations

- 2. Individual price stickiness \Rightarrow rigidity of the aggregate price level?
 - Calvo (1983): constant adjustment probability
 - Monetary shocks have large and persistent real effects
 - Golosov-Lucas (2007): fixed "menu" cost + idiosyncratic shocks
 - Strong selection effect \Rightarrow near-neutrality of money

- Suppose that price changing is risky: occasionally, firms may inadvertently set a price which is worse than the current one
- We assume the probability of setting any given price is proportional to the exponent of the value of having that price
- Firms can reprice costlessly in any given period

Preview of the main micro findings: stickiness

- The riskiness of changing prices implies price stickiness:
 - Firms change prices only when they are far from the optimum
 - When prices are close to optimal, firms leave them unchanged

Preview of the main micro findings: four facts

- A single new parameter controls the degree of precision; we calibrate it to match the frequency of price changes
- We reproduce four "puzzling" features of the micro evidence:
 - O-existence of price changes of various sizes (Midrigan, forthcoming)
 - 2 Declining adjustment probability in price age (Klenow-Malin, 2009)
 - Overage size of price changes roughly constant in the price age (Ibid.)
 - Extreme prices are young (Campbell-Eden, 2010)

Histogram of price changes: data vs. menu cost model

Declining price adjustment hazard

Typical price adjustment hazard in the menu cost model

Idiosyncratic shocks with positive persistence

Feb 2011 11 / 57

Average size of price changes as a function of price age

Source: Klenow-Kryvtsov (2008)

Feb 2011 12 / 57

Average size of price changes in the Calvo model

Extreme prices are young in the data

Figure 7: The Fraction of Young Prices by Relative Price⁽ⁱ⁾

Note: (i) Young prices are those with ages less than four weeks. The plotted fractions exclude prices one week old from both the numerator and denominator.

Source: Campbell-Eden (2010)

Anton Nakov (BdE & ECB)

Precautionary price stickiness

Feb 2011 14 / 57

Extreme prices in the Calvo model

Feb 2011 15 / 57

< ∃

Extreme prices in the menu cost model

2% trend inflation

Anton Nakov (BdE & ECB)

Feb 2011 16 / 57

Preview of the main macro findings

- The model predicts well the effects of positive trend inflation on the frequency and size of price changes
- A powerful selection effect is at work, similar to the menu cost model
- The real effects of nominal shocks are much smaller than in the Calvo model, but nonetheless are twice as large as in the menu cost model
- Noise in the *timing* of repricing more easily delivers money non-neutrality than noise in reset prices themselves

Outline of the talk

- Related literature
- Ø Model
- Calibration
- Omputation
- Sesults
- Onclusions

3 → 4 3

Related literature: state-dependent pricing

• Previous work obtained solutions by limiting the scope of analysis

- Partial equilibrium (Caballero-Engel, 2007; Klenow-Kryvtsov, 2008)
- ▶ No idiosyncratic shocks, only aggregate (Dotsey-King-Wolman, 1999)
- Strong assumptions on idiosyncratic process (Gertler-Leahy, 2005)
- But large idiosyncratic shocks are frequent (Klenow-Kryvtsov, 2008)
- Golosov-Lucas (2007): menu cost + large firm-level shocks
 - Striking near-neutrality result, but model's fit to price data questionable

Related literature: size distribution of price changes

Proposals to "fix" the distribution:

- Sectoral heterogeneity in fixed menu costs (Klenow-Kryvtsov, 2008)
- Multiple products on the same "menu" + leptokurtic technology shocks (Midrigan, 2010)
- Costain-Nakov (JMCB forthcoming): the probability of adjustment increases *smoothly* with the gain from adjustment
 - We match the distribution better with less free parameters

Related literature: bounded rationality, model uncertainty, information constraint

- "Bounded rationality": Akerlof-Yellen (1985)
 - Assume a fraction of non-maximizing agents
 - ▶ In our case *all* firms are close to, but not quite, rational
- "Model uncertainty": Hansen and Sargent (2010)
 - Looking for decision rules robust to local model misspecification
 - Entropy penalty constraining the set of alternative models
- "Information constraint": Sims (2003)
 - Constraint on information flow from environment to decision-maker
 - Our decision-maker has complete information but faces an implementation constraint

Related literature: "logit equilibrium"

- McKelvey and Palfrey (1995): a statistical generalization of Nash equilibrium which allows for noisy optimizing behavior
- Successful at explaining play in many games where Nash performs poorly (e.g. centipede game, Bertrand competition)
- A single-parameter generalization: imposes substantial discipline

Model: monopolistic firms

• Firm output: $Y_i = A_i N_i$

- Idiosyncratic productivity: $\log A_{it} = \rho \log A_{it-1} + \varepsilon_{it}^{a}$
- Profits: $U = P_i Y_i WN_i$
- Firm value: $V(P_i, A_i, ...) = U + E[QV(P'_i, A'_i, ...)]$
- Optimal price choice: $P^*(A_i) = \arg \max_P V(P, A_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Model: noisy optimization

- Instead, we assume *noisy optimization*
- The decision to change the price triggers a process, the outcome of which is uncertain
- The outcome is drawn from a logit distribution centered on P*

$$\pi(P_i|A_i) = \frac{\exp(\xi V(P_i, A_i))}{\sum_P \exp(\xi V(P, A_i))}$$

• Precision parameter $\xi \in [0,\infty)$ controls the tightness around P^*

Parameter $\xi \in [0,\infty)$ controls the "degree of precision":

• If $\xi = \infty$, firms choose the optimal price with $\pi(P^*|A_i) = 1$

- If $\xi = 0$, firms draw their price from a uniform distribution
- If $0 < \xi < \infty$, firms choose the optimal price with $\pi(P^*|A_i) < 1$

イロト 不得下 イヨト イヨト 二日

Model: adjustment decision

Expected gain from adjustment

$$G = \sum_{P} \pi(P|A) V(P,A) - V(P,A) \ge 0$$

- Adjustment decision:
 - Change price if G > 0
 - Stay with current price if G < 0
- No randomness in the above timing decision
- Changing the price itself is costless

Model: (S,s) structure

- $G \ge 0$ depends on how far the current price is from the optimum
 - If the current price is far from the optimal, then $G > 0 \Rightarrow$ reset
 - If the current price is close to optimal, then $G < 0 \Rightarrow$ stay with current
- An (S,s) inaction band emerges endogenously as soon as $\xi < \infty$
- The width of the inaction band depends on the degree of precision ξ

Deriving logit choice from an entropy constraint

• Maximize the expected gain from adjustment

$$\max_{\lambda,\pi_i} \lambda \left(\sum_i \pi_i V_i - V - \xi^{-1} \sum_i \pi_i \log \pi_i \right)$$

subject to

$$\sum_{i} \pi_{i} = 1$$

• Optimality conditions:

•
$$\pi_i = \exp(\xi V_i - \eta)$$

$$\lambda = \mathbf{1} \left(\sum_{i} \pi_{i} V_{i} - V > \xi^{-1} \sum_{i} \pi_{i} \log \pi_{i} \right)$$

Model: the rest is standard

• Household utility: $\frac{C^{1-\gamma}}{1-\gamma} - \chi N + \nu \log(M/P)$ with discount β

• Period budget constraint:

 $P_t C_t + M_t + R_t^{-1} B_t = W_t N_t + M_{t-1} + T_t + B_{t-1} + \Pi_t$

Consumption bundle:

$$C_t = \left[\int_0^1 C_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$
 with price $P_t \equiv \left[\int_0^1 P_{it}^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$

• Money supply: $M_t = \mu \exp(z_t) M_{t-1}$, where $z_t = \phi_z z_{t-1} + \epsilon_t^z$

イロト 不得下 イヨト イヨト 二日

Model: aggregate consistency and aggregate state variable

- Labor market clearing: $N_t = \Delta_t C_t$
- Measure of price dispersion: $\Delta_t \equiv P_t^{\epsilon} \int_0^1 P_{it}^{-\epsilon} A_{it}^{-1} di$
- Balanced budget: $M_t = M_{t-1} + T_t$
- Bond market clears: $B_t = 0$
- Aggregate state variable: $\Omega_t \equiv (z_t, M_{t-1}, \Psi_{t-1})$

Computation

• Challenge: need to keep track of the *distribution* of firms

- Reiter's (2009) method of "projection & perturbation"
- Appropriate for price-setting by firms: idiosyncratic shocks are relatively large; aggregate shocks are relatively small
- Two-step procedure, computing:
 - Aggregate steady-state by non-linear projection on a finite grid
 - Aggregate dynamics by linearization around each grid point

Computation: aggregate steady-state (projection)

Real prices converge to an ergodic distribution Ψ

- Guess real wage: w
- 2 Consumption: $C = (\chi/w)^{1/\gamma}$
- **③** Payoff at grid points: $U_{ij} = (p_i w/A_j) C p_i^{-\epsilon}$
- Iterate on value matrix: $\mathbf{V} = \mathbf{U} + \beta \mathbf{R}' (\mathbf{V} + \mathbf{G}) \mathbf{S}$
- Iterate on distribution matrices:

$$\begin{split} & \tilde{\Psi} = \mathsf{R}\Psi\mathsf{S}' \\ & \bullet \ \Psi = (\mathbf{1}_{\#^{p}\#^{a}} - \mathsf{\Lambda}) \, . * \tilde{\Psi} + \mathsf{\Pi}_{\#^{p}\#^{a}} . * \left(\mathbf{1}_{\#^{p}\#^{p}} * (\mathsf{\Lambda} . * \tilde{\Psi})\right) \end{split}$$

③ Check if $\sum_{j=1}^{\#^{p}} \sum_{k=1}^{\#^{a}} \Psi_{t}^{jk} p_{j}^{1-\epsilon} = 1$, and adjust w until it holds

Computation: aggregate dynamics (perturbation)

• Dynamic Bellman equation:

$$\mathbf{V}_{t} = \mathbf{U}_{t} + \beta E_{t} \left[\frac{u'(C_{t+1})}{u'(C_{t})} \mathbf{R}'_{t+1} \left(\mathbf{V}_{t+1} + \mathbf{G}_{t+1} \right) \mathbf{S} \right]$$

• Distributional dynamics:

$$\tilde{\Psi}_t = \mathsf{R}_t \Psi_{t-1} \mathsf{S}'$$

$$\Psi_t = (\mathbf{1}_{\#^p \#^a} - \mathsf{\Lambda}_t) \cdot * \tilde{\Psi}_t + \mathsf{\Pi}_t \cdot * \left(\mathbf{1}_{\#^p \#^a} * (\mathsf{\Lambda}_t \cdot * \tilde{\Psi}_t) \right)$$

• Collect variables in vector: $X_t = (vec(\Psi_{t-1}), vec(V_t), C_t, \pi_t, M_{t-1})$

- Model: $E_t \mathcal{F}(X_{t+1}, X_t, z_{t+1}, z_t) = 0$
- Linearization: $E_t A \Delta X_{t+1} + B \Delta X_t + E_t C z_{t+1} + D z_t = 0$
- Solve with Klein's QZ method for linear RE models

Calibration

onths
c

Note: noise = 1/precision = 0.04

Less noise than typically estimated in applied GT experiments

Histogram of price changes

Feb 2011 35 / 57

< 31

Price adjustment hazard

Feb 2011 36 / 57

3 🕨 🖌 3

Size of price changes as a function of price age

Feb 2011 37 / 57

.∃ >

Extreme prices are young in our model

∃ ► < ∃ ►</p>

Summary steady-state statistics

ce
C

	Calvo	Calvo MC PPS		Nested	Data
				PPS	
Frequency of price changes	10	10	10	10	10
Mean absolute price change	2.8	5.5	11.9	10.4	10.4
Std of price changes	3.7	5.6	14.5	13.1	13.2
Kurtosis of price changes	4.2	1.2	2.6	2.8	3.5
Percent of price increases	48	51	50	50	50
$\%$ of abs price changes $\leq 2.5\%$	55	0	9.4	12.8	10
Mean loss due to errors (% of rev.)	0.6	0.1	0.5	1.9	

All statistics refer to regular price changes and are stated in percent.

< ロ > < 同 > < 三 > < 三

Price-setting strategy

Feb 2011 40 / 57

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Expected gain from adjustment

.∃ >

S,s bands

◆□ > ◆圖 > ◆臣 > ◆臣 >

Stationary distribution of firms

Feb 2011 43 / 57

- < A

.∃ >

Effects of positive trend inflation

Anton Nakov (BdE & ECB)

Feb 2011 44 / 57

(日) (同) (三) (三)

Responses to a money growth shock

Anton Nakov (BdE & ECB)

Precautionary price stickiness

Feb 2011 45 / 57

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Inflation decomposition: Costain-Nakov (optimal pricing)

Inflation identity:
$$\pi_t\equiv\sum_{j=1}^{\#^p}\sum_{k=1}^{\#^a}x_t^{*jk}\lambda_t^{jk}\widetilde{\Psi}_t^{jk}$$

where $x_t^{*jk} \equiv \log\left(\frac{p_t^*(a^k)}{p^j}\right)$ are firms' *desired* price changes

Decomposition:

$$\pi_t \equiv \bar{x}_t^* \bar{\lambda}_t + \sum_{j,k} x_t^{*jk} \left(\lambda_t^{jk} - \bar{\lambda}_t \right) \widetilde{\Psi}_t^{jk}$$

where $\bar{x}_t^* \equiv \sum_{j,k} x_t^{*jk} \widetilde{\Psi}_t^{jk}$ is the average *desired* price change

$$\Delta \pi_t \approx \bar{\lambda} \Delta \bar{x}_t^* + \bar{x}^* \Delta \bar{\lambda}_t + \Delta \sum_{j,k} x_t^{*jk} \left(\lambda_t^{jk} - \bar{\lambda}_t \right) \widetilde{\Psi}_t^{jk}$$

Inflation decomposition: Costain-Nakov (noisy pricing)

Inflation identity:
$$\pi_t \equiv \sum_{j=1}^{\#^p} \sum_{k=1}^{\#^a} (x_t^{*jk} + \epsilon_t^{jk}) \lambda_t^{jk} \widetilde{\Psi}_t^{jk}$$

where $x_t^{*jk} \equiv \log\left(\frac{p_t^*(a^k)}{p^j}\right)$ are firms' *desired* price changes

Decomposition:

$$\pi_t \equiv \bar{x}_t^* \bar{\lambda}_t + \sum_{j,k} x_t^{*jk} \left(\lambda_t^{jk} - \bar{\lambda}_t \right) \widetilde{\Psi}_t^{jk} + \bar{\epsilon}_t$$

where $\bar{\epsilon}_t\equiv\sum_{j,k}\epsilon_t^{jk}\lambda_t^{jk}\widetilde{\Psi}_t^{jk}$ is the average price error

$$\Delta \pi_t \approx \bar{\lambda} \Delta \bar{x}_t^* + \bar{x}^* \Delta \bar{\lambda}_t + \Delta \sum_{j,k} x_t^{*jk} \left(\lambda_t^{jk} - \bar{\lambda}_t \right) \widetilde{\Psi}_t^{jk} + \Delta \bar{\epsilon}_t$$

Anton Nakov (BdE & ECB)

Feb 2011 47 / 57

- 4 週 ト - 4 三 ト - 4 三 ト

Selection effect is dominant at low trend inflation rates

Feb 2011 48 / 57

Estimated Phillips curve coefficients

Correlated money growth shock	Calvo	MC	PPS	Nested	Data
$(\phi_z = 0.8)$				PPS	
Frequency of non-zero price changes (%)	10	10	10	10	10
Std of money shock (x100)	0.331	0.122	0.153	0.277	
Std of quarterly inflation (x100)	0.246	0.246	0.246	0.246	0.246
% explained by μ shock alone	100	100	100	100	
Std of quarterly output growth (x100)	1.08	0.195	0.310	0.874	0.510
% explained by μ shock alone	212	38.3	60.7	171	
Slope coeff. of Phillips curve [*]	1.1	0.149	0.273	0.848	
Standard error	0.070	0.012	0.006	0.035	
\mathbb{R}^2 of regression	0.892	0.832	0.987	0.952	

Table 2.	Variance	decomposition	and Phillips	curves
----------	----------	---------------	--------------	--------

The "slope coefficients" are 2SLS estimates of the effect of inflation on consumption First stage: $\pi_t^q = \alpha_1 + \alpha_2 \mu_t^q + \epsilon_t$; second stage: $c_t^q = \beta_1 + \beta_2 \hat{\pi}_t^q + \epsilon_t$, where the instrument μ_t^q is the exogenous growth rate of the money supply and the superscript q indicates quarterly averages.

(日) (同) (三) (三)

Sensitivity to noise

Feb 2011 50 / 57

Noise also in the timing of price changes

- So far, noise was allowed only in the decision of what price to set
- The decision when to change prices was fully rational
- What if the *timing* decision is noisy as well?

$$\lambda^{jk} = 1 - \exp\left(rac{-ar\lambda}{1 + \exp\left(-\xi G^{jk}
ight)}
ight)$$

- $\bar{\lambda}$ controls the *speed* at which decisions of accuracy ξ can be made
- ξ and $\bar{\lambda}$ are calibrated jointly to match:
 - the frequency of price changes
 - the average absolute size of price changes

Summary steady-state statistics

ce
C

	Calvo	MC	PPS	Nested	Data
				PPS	
Frequency of price changes	10	10	10	10	10
Mean absolute price change	2.8	5.5	11.9	10.4	10.4
Std of price changes	3.7	5.6	14.5	13.1	13.2
Kurtosis of price changes	4.2	1.2	2.6	2.8	3.5
Percent of price increases	48	51	50	50	50
$\%$ of abs price changes $\leq 2.5\%$	55	0	9.4	12.8	10
Mean loss due to errors (% of rev.)	0.6	0.1	0.5	1.9	

All statistics refer to regular price changes and are stated in percent.

< ロ > < 同 > < 三 > < 三

Adjustment probability smoothly increasing in the gain

Anton Nakov (BdE & ECB)

Precautionary price stickiness

Feb 2011 53 / 57

Responses to money shock: nested logit model

Feb 2011 54 / 57

< ∃⇒

Conclusions

- A model of price stickiness due to riskiness in the implementation
- Just one free parameter, controls the degree of precision
- Embed it into a standard DSGE framework
- Compute GE distributional dynamics

Conclusions

• The model successfully reproduces four puzzling facts

- Co-existence of price changes of various sizes
- Declining probability of adjustment in the age of a price
- Roughly constant size of adjustment in the age of a price
- Extreme prices are young
- Money shocks have relatively limited real effects due to a strong selection effect
- Allowing for noise also in the *timing* of price changes more easily delivers monetary non-neutrality closer to the Calvo model

Possible next steps

- More evidence about the story
 - Correlating size of price changes with repricing probability: very small or very large price changes are likely to end up outside the S,s bands
 - Implementation problems, noisy "chain of command": more likely in larger organizations?
 - Management literature: inaction due to implementation risk?
- Other applications: consumption or portfolio choice, communication